
AUTOMATIC PROBLEM-SOLVING IN ARCHAEOLOGY: 
A COMPUTATIONAL FRAMEWORK 

One of the recurrent words in post processualist archaeology is the term 
meaning, maybe as a result of structuralism and semiotics influence. In this 
paper I deal with the computer representation of archaeological meanings from 
a processual view. I do not pretend to discover meanings computationally, but 
to study by means of a computer program the task archaeologists do. I am in­
terested in "meanings" as a theoretical construct, and not as those "mental 
states" in past minds. Therefore, the computational analysis I propose is not 
a cognitive reconstruction, but a description of problem-solving mechanisms used 
by archaeologists. This analysis is not a defense of a positivist theory of archaeo­
logical meanings, nor a rebuttal of post-processualist or contextual ideas, but the 
strict analysis of the logica! basis of archaeological discourse and reasoning. 

1. ARCHAEOLOGICAL MEANINGS 

Archaeologists usually say they need to discover the "meaning" of archaeo­
logical artifacts and ecofacts. They have also developed an enormous set of 
techniques to be able to obtain such "discoveries". In this context, " meaning" 
looks like a necessary category of real entities, therefore the task of scientists 
will be finding out that hidden characteristic. 

In this paper, however, I propose a different definition for "meaning": 
"the uses of the artifact". "Meaning" is not an intrinsic property of any ar­
chaeological artifact. A single object can be used in many ways, depending on 
the context or the users' needs. Therefore, archaeological artifacts have not the 
same meaning in ali circumstances, because there is not a single way of using 
it. lt is not the object that chooses its utilization, but users according to con­
texts. 

This definition of meaning is hardly novel in other disciplines, like Linguis­
tics, Psychology or Computer Science (SEARLE 1979; FoooR 1981; WINOGRAD 
1983; GRAESSER, CLARK 1985; CuMMINS 1989, among others). In literary and 
philological studies, the meaning of a message lies not only in the text, because 
the meaning of that text is a cognitive construct determined by different infor­
mation sources. The first one is obviously the explicit content in the message 
(the text). The second source of information consists in the knowledge stored 
in the receiver's long-term memory. The third one constitutes the receiver's ob­
jectives. The fourth, and last source of information, is the context in which the 
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message has been produced. It includes sodai relations between transmitter and 
receiver, shared knowledge between participants in communicative events, and 
principles of cooperative communication. 

It is not very clear that an archaeologist is involved in a communication act 
when he tries to explain the archaeological record. Who is the transmitter in 
that situation? Artifacts themselves or the people who made those artifacts? Let 
us suppose that the artifact is the transmitter, because it is the only we know 
about the real transmitter. If that analogy were valid, then we would describe 
the "archaeological understanding act" as a system with the following compo­
nents (Fig. 1): 

A transmitter (archaeological record): we suppose that the artifact's shape 
and deposition processare some kind of "text" containing "instructions" 
that allow us to understand the way in which that artifact was used. 
A receiver: an archaeologist with the technical training needed to under­
stand the archaeological record. 
Knowledge accepted by the Scientific Community to which the archaeolo­
gist belongs, that is to say, a Scientific Theory. 
Goals proposed by the archaeologist before his beginning with the explana­
tion. 
A context or situation, that is to say, a set of previously understood ar­
chaeological meanings, which affect the understanding of the new one. For 
example, the explanation of the "meaning" of a site depends on the mean­
ings obtained from the analysis of other sites around it. In other words, the 
meaning of an artifact depends on the meanings of the artifacts around it. 

From this discussion we must deduce that any interpretation of archaeologi­
cal remains is a theory, even though it makes no reference to theoretical issues 
(ABELSON, LALLJEE 1988; GARDIN 1990). Archaeological Meanings are cogni­
tive constructs, the result of some inference mechanisms. Archaeologists cannot 
discover the meaning of the archaeological record; they have to "build" it, and 
to achieve this reasoning process archaeologists need "knowledge". This paper 
deals with the analysis of that knowledge. 

2. MIDDLE-RANGE THEORIES 

One way to describe prior archaeological knowledge is by using the notion 
of Middle-Range Theories, proposed by Robert Merton in Sociology, and in­
troduced in archaeology by Binford (1977; 1981) and by Raab and Goodyear 
(1984). 

In "traditional Archaeology" the stipulation of meanings to data was im­
plicit, and the main mechanism was common sense. According to Binford, most 
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Fig. 1 - A scheme for building Archaeological Meanings. 

justifications for such stipulations were ill-founded and generally wrong, 
produced by an alleged knowledge (a receivcd knowledge) gained culturally, not 
through research in the strict sensc of thc word. The only way to solve the 
problem would be to use prior "scientific" knowledge. That is to say, a theory 
that relatcs the observed datato the processes that lead to thcm. Howcver, this 
knowledge does not exist in the past. An archaeologist cannot certainly learn 
about the quality of the nccded prior knowledge by studying the archaeological 
record, where meaning is infused by "common sense" justifications (BINFORD 

1989). Prior knowledge has to be obtained independently of the analysis of the 
archaeological record . 

Archaeologists usually obtain this kind of "scientific" prior knowledge 
through actualistic or ethnoarchaeological research. In this paper, the " produc-
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tion" of such knowledge does not interest us, but its use to solve a specific 
problem. In Binford's words: 

« We seek to analyze our data and partition our knowledge into generai, uniformitarianistic 
knowledge that can serve as a frame of reference. Against this frame of reference we can project 
or compare other properties of the archaeological record that are also understood in generalizable 
but independent terms in order to isolate the organizational characteristics of past systems. In 
both cases, we would initially be seeking to recogniz~ and understand properties that bave generai 
relevance to human actions ... These broad generalizable properties would then serve as an ana­
lytical frame of reference against which we could discern extensive behavioral variability. In the 
context of such similar organizations, very different 'behaviors' (in Schiffer's sense of the word) 
might be carried out» (BINFORD 1987). 

Middle-Range Theories will thcn appear like universal generalizations, used 
as premises in a deductively reasoned interpretation of the archaeological re­
mains. These universal arguments specify the archaeological observables that 
are expected to manifcst particular phenomena of interest, and/or their expect­
ed nature of organization (CARR 1985, 1987). 

In other words, we use Middlc-Range Theories to deduce hypotheses. The 
logica! pattern implicit in the use of such deductions is the following: 

If x is an instance of X 
And X is Y. 
Then, x is Y. 

"X is Y" is the result of some controlled experiment (a universal generalization 
obtained through observation of present dynamics) and we may use it as a 
critcrion of relevance because of its testability. Interesting examples would be 
Hoffman (1985) and O'Shea (1984). The first one employs principles of lithic 
technology to select severa! variablcs for investigating morphological variation 
in a set of projectile points relevant to maintenance and reduction process. The 
second one specifies the kinds of mortuary variables that are likcly to distin­
guish horizontally or vcrtically differentiated sodai segments; these variables al­
low the selection of the potentially relevant variablcs for a factor analysis. 

Let us analyze the following example, from Binford (1984): the specific 
anima} bones common at the residence of one family are generally low or abscnt 
at the locations of other consumer units within the same site . This condition 
dcrives from the fact that differcnt anatomica! segments are thc units shared 
out by hunters. This mcans that the anatomica} units, which are representcd 
by only one element from a single individuai, such a~ the skull or the neck, if 
present within one site will only be present at a single residence or consumer 
unit within the site. 
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Y = sharing of food aftcr collective hunting. 
In "laboratory" conditions (for instance, in an ethnoarchaeological research) 
some archaeologists have observed that food is shared between all members of 
the hunting group. That action produces a non ambiguous materiai trace in the 
deposition of bones in each consumer (residential) unit. If we observe during 
the excavation of an archaeological site a deposition of bones similar to that ob­
tained trough experimentation, then the condusions will be the same. 

The main limitation in Binford's description of Middlc-Range Theories is 
the lack of structure within the Thcory (see criticism in ScHIFFER 1988; WYLIE 
1989). A Middle-Range Theory in Binford's terms looks like a set of indepen­
dent universal propositions, used when an archaeologist finds an analogous 
case. Experimental results can be relevant, but the application of the theory to 
the evidence not. The process is most similar to an assignation o/ meaning than 
a meaning construction. 

In this paper I mainly aim to formulate an adequate architecture for Middle­
Range Theories, specifically one allowing computational implementation and 
execution. 

3. AUTOMATIC PROBLEM-SOLVING 

We can define a problem as a goal we want to achieve but we do not know 
how. Computer Scientists translate this single definition into the following 
terms: « the modification of an Initial State so that it matches an expression 
whose truth-value (or validation conditions) needs to be determined ». The so­
lution to the problem will then be the truth-value or validation conditions of 
this expression (the goal). We validate a goal if there is a well-defined operator 
allowing the modification of the Problem lnitial State until it matches the 
truth-conditions of the Final State or solution (see PEARL 1985; LAURIÈRE 
1986; BROWN, CHANDRASEKARAN 1989; SHARPLES et al. 1989; BoY 1990; PAR­
TRIDGE 1990). 

In Archaeology, our goals are obviously the meanings of the archaeological 
record, that is to say, the socia! or technical uses of artifacts and ecofacts. We 
may formalize an Archaeological Problem in the following way: how an artifact 
A (or set o/ arti/acts A) is used by a community H in a context C; where the con­
text of utilization may be spatial, sodai, chronological, etc. (Fig. 2). This 
problem has four components: 

The artifact or set of artifacts (A) . 
The human community who produced those artifacts (H). 
The context of use of the artifacts (C). 
The use of the artifacts (the goal of thc problem). 
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Fig. 2 - A dccomposition on Archacological Problems. 

The task is then to evaluate the socia! uses of some specific set of artifacts 
(Final Situation or State) in terms of: a) their description, and b) all information 
available about the socia!, cultura! or chronological context and about the hu­
man community who produced those artifacts (lnitial Situation or State). 

T o sol ve any problem we need knowledge about all the different possible 
states. Final and Intermediate Situations (in other words, solutions and infer­
ence steps) have to be encoded in some explicit way. We call it the problem 
space, and we may represent it in procedura! or declarative form. The first one 
follows a well-defined algorithm, which specifies explicitly how to find the out­
·put variables for any given input variables. If this were the case: 
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There would be a definite criterion for testing any proposed solution, and 
a mechanizable process for applying the criterion. There has to be a 
description of the solution state, or a test to determine if that state has 
been reached. 
There would be at least one problem space in which the initial problem 
state, the goal state, and ali other states that may be reached or considered 
can be represented, while attempting a solution of the problem. There 
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exists a set of terms for describing and characterizing the initial state, the 
goal state and the intermediate states. 
Attainable state changes (legai moves) in a problem space are the transi­
tions from given states to the states directly attainable from them. There 
has to be a set of operators to change one state into another, with condi­
tions for the applicability of these operators (SIMON 1973; PoPLE 1982). 

For instance, given the lengths of the two shortest sides of a rectangular tri­
angle, "find the length of the third side" is a problem, which is solved 
procedurally. In other terms, there exists an operator " .../ (x + y) " , which 
produces the required solution from the given initial state (the lengths of the 
two shortest sides); there also exists a criterion (Pythagoras Theorem) to vali­
date that solution. In this case, solutions and inference steps are produced 
through an algorithm, and they use the Initial State as raw material. 

However, "Meaning of x?" , where (x) is an archaeological artifact, cannot 
be solved in the same way, because " meaning" is nota fixed procedure. In other 
terms, there does not exist any procedure to generate solutions and inference 
steps. In this case: 

There is not any single criterion to validate selected solutions. 
There is not any mechanizable procedure to apply that criterion. 
The Problem Space (the set of all possible solutions) is not well defined. 

Are archaeological problems then unsolvable? Not at all. If we cannot 
" generate" problem spaces by means of a procedure, we may then represent 
problem-solving knowledge as a list of discrete and closed units. Those declara­
tive units are successive states of the problem. We substitute equations for ex­
plicit sets of propositions. For example, there is no algorithm to discover the 
technical function of a lithic tool from its shape. We can implement a set of 
answers (knife, scrapers, spear .. . ) and a set of decision rules for each one. The 
resulting program looks like a complex database and not like a mathematical 
procedure, and we may consider the problem-solving mechanism as a sequential 
search in a pre-existing problem space, using a finite number of particular deci­
sion rules. 

4. HEuRisTic RuLES AND MmoLE-RANGE ExPRESSIONS 

In a procedura! problem-solving method we bave probably enough with only 
one equation; but in a declarative problem-solver we need a great number of 
very specific decision rules. These rules look like Stimulus/Response pairs, 
where the Stimulus and the Response are sets of descriptive features defining 
a particular knowledge unit (or state of the problem). The representation for­
mat (production rule) is: 
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If A 
Then B 

Where A and Bare two dedarative states of the problem (for instance, an Ini­
tial and a Final State or two Intermediate States). This rule establishes a rela­
tionship among a set of facts in an IF dause and one or more facts in a THEN 
dause. 

If 

and 

then 

Using the previous example (BINFORD 1984): 

the animal bones found at the residential unit (x) are different from the animal bones 
found at the residential unit (y) 

in controlled laboratory situations it has been demonstrated that such differences in the 
animai bones deposition between consumer or residential units are the result of the shar­
ing of food between the members of a hunting group, 

people who lived and ate in (x) and (y) would belong to the same hunting group. 

We have here three dedarative knowledge units, two of them are states of 
the problem and the third one is a condition (or Middle-Range Expression) for 
the activation of that rule: 

Initial State: the animai bones found at two residential units (Observation). 
Final State: a single hunting group (an Anthropological Concept and a Theo­
retical T erm). 
Middle-Range Expression: differences in the animai bones' deposition be­
tween consumer and residential units are the result of food sharing between 
the members of a hunting group (Experiment). 

"A single hunting group" is an explanatory concept, a dedarative prior 
knowledge unit, and not the result of some mechanical procedure. The goal we 
want to achieve is to evaluate the expression: « people who lived and ate in (x) 
and (y) would belong to the same hunting group ». This evaluation is possible 
because we dispose of a middle-range expression (a condition) which activates 
a production rule expressing the association between the evidence and the in­
terpretation. 

The ideai form of any decision rule in a declarative problem-solver is: 
IF 

[EMPIRICAL DATA] 
and 

[ACTIVATION CONDITION] is a property of [SOLUTION] 
and 

there is an analogica! link between [EMPIRICAL DATA] and ACTIVA­
TION CONDITION] 

THEN 
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[EMPIRICAL DATA] is an instance of [SOLUTION]. 

In other words, the linking bctween a particular evidence and a particular inter­
pretation unit is only possible if the rule is made active. This situation succeeds 
only if there is some independent activation condition analogically linked to em­
pirica! data. Activation conditions are obviously the middle-range expressions. 

Middle-Range Expressions are sufficient (and not necessary) properties of 
Interpretative Concepts and Theoretical Entities. Without them, Interpreta­
tions are passive sets of propositions, useless in a problem-solving task. They 
do not work as Generai Laws, but they reduce the range of possible interpreta­
tions for an archaeological problem: independent experimental results serve to 
make active Concepts, because they allow possible links between the Observa­
tion and the Theory. Nevertheless, given the fact that decision rules and 
declarative concepts are discrete units, their activation will be never definitive. 
We must deduce that there are other ways to make active an Interpretation. To 
solve this limitation, Computer Scientists and Cognitive Psychologists bave in­
troduced the notion of heuristics as an alternative to the "truth conditions" of 
procedurally obtained solutions (NEWELL, SIMON 1972, 1976; NEWELL 1973, 
1980; SIMON 1973, 1979, 1983). The Heuristic Conditions for the Activation 
of a declarative solution are a set of some plausible criteria to accept or refuse 
the final state of a problem as its solution. That means that the solution is not 
" true", but "plausible": it is a good solution, although we cannot know if it 
is the best one we can produce with that set of declarative knowledge. Thus, 
Middle-Range Expressions are the Heuristic Conditions for the proper activa­
tion of Interpretative Concepts. 

This is the most important aspect we have to learn from the above discus­
sion: an Archaeological Middle-Range Theory is nota Universal Theory about 
Human Culture, but a kind of dedarative problem-solving knowledge, heuristi­
cally relevant to a particular archaeological problem. Heuristic does not mean 
"subjective", but "a plausible way to use a particular declarative knowledge". 
Maybe there are infinite possible ways to use them, but we will use the only 
one we bave tested. 

5. AN !NTELLIGENT DATABASE 

Middle-Range Theories are usually very complex, because they cannot be 
reduced to single and independent expressions. In this chapter I will develop 
an example of "automatic" Middle-Range Theory, the GLADIUS project, ac­
tually underway at the Universitat Autonoma de Barcelona (Spain) (BARCELO 
1991a, 1991b). The aim of the program is to analyze the complexities around 
the linking, structuring and spreading activation in a computer system contain-
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ing a great number of middle-range expressions. 
GLADIUS is an Intelligent Database, that is to say, a Database able to use 

its contents automatically to solve archaeological problems. To achieve this 
task, it does not contain simple data and search procedures, but complex 
knowledge units (concepts) and built-in inference mechanisms. 

GLADIUS implements an archaeological theory about the socia! uses of ar­
tifacts. 1t answers questions like: « Did that human community use these ob­
jects associa! symbols, that is to say, as symbols for socia} identity? » The com­
ponents of this Theory are the following: 

Different sets of interpretative concepts extracted from standard socia! 
theory (Consumer Sociology and Economie Anthropology). 
Hierarchical relationships between the concepts. 
An activation mechanism that uses data sets containing empirical observa­
tions. 
An analogica! mechanism that searches for new unexpected associations 
between concepts. 

Concepts are represented using a cornputational data structure called 
« FRAME ». lt is an individuai object, defined by some attributes. For example 
(STUTI' 1989): 

PRINCIPLE: 
name: marxist-principle-1 
claim: cause (class division, conflict within groups) 
grounds: common-sense-principle-2 

PRINCIPLE: 
name: common-sense-principle-2 
claim: cause (divisions between groups based on X; conflict within groups based on X) 
grounds: basic-ground 

where "name", "claim" and "grounds" are attributes. GLADIUS uses three 
kinds of attributes: 

Structural: definition characteristics of each concept. 
Relational: the specific role of that knowledge unit in the problem-solving 
task, that is to say, some kind of meta-knowledge about the computer im­
plementation of that concept. 
Activation Conditions: some "scientific" proposition generated by ex­
perimentation or by deduction about the strength of that concept and the 
nature of links converging on it frorn the other concepts in the system. 

Concepts are organized in a hierarchical network according to the quantity 
of observational terms used to define their Structural Attributes: the more ob­
servational terms, the lower leve! in the network. Por example, a Concept like 
"Sociotechnical Item" has a Iower leve! than the Concept "Socia) Conflict". 
Inheritance links are defined between all hierarchical levels, in such a way that 
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instances automatically receive information from their higher linked units. 
Inheritance links only have an indirect relevancc on the Activation Condi­

tions attributes. There are some differences between the activation conditions 
for Low-Level Concepts and the activation conditions for High-Level ones. In 
both cases, these attributes contain middle-range expressions, but in the 
Lowest-Level Concepts they are expressed in observational terms, and in higher 
levels as a set of previously activated concepts. 

For example, the concept "Sociotechnical Item" is the lowest concept in 
a chain whose terminal (highest) concept is "Sodai Conflict". Activation Con­
ditions for the first concept are expressed in observational terms: « if object (x) 
has becn found in a grave, then it is a Sociotechnical Item». Activation Condi­
tions for the concept "Social Conflict" are: « If the Concepts: (Sociotechnical 
Item), (Controlled Distribution), (Social Rivalry), (Appearance of Social Elites} 
are active, then the Solution will be (Sodai Conflict) ». Binford's Middle­
Range-Expressions only appear in the Lowest-Level Concepts. The Activation 
Conditions for High-Level Concepts are also middle-range expressions, but 
they are more like Gardin's « Intermediate Propositions (Pi) » than Binford's 
« frames of reference ». 

Lowest-Level Concepts are consequently the instances of High-Level ones, 
because they work as their activation conditions. Of course, the declarative 
links bctween them are also "scientific" and testable pieces of information, 
although not experimental (the number of observational terms is too reduced}. 
Most of the time we implement them deductively, as a subdivision of the 
Highest oncs. Not all the concepts in GLADIUS are organized hierarchically; 
only concepts with tested relationships are structured in "inference chains". 
The resulting system is a set of independent chains (which can be very long or 
very short), whose links will be established through analogical inference. By 
running the program we will obtain positive or negative tests of all these links, 
declarative or automatically generated. 

GLADIUS also contains a set of unrelated knowledge units -called Activa­
tion Units. They are not lnterprctations or Concepts, but computational enti­
ties able to transiate input information (empirica] information contained in a 
classical Database} into the same terms as the Lowest-Level Concepts Activa­
tion Conditions. 

First, the system assumes that the user has asked for a specific problem. The 
user introduces some empirical descriptive features, which are read by the sys­
tem and stored in the Activation Unit. This unit activates the lowest instances 
of Theoretical Entities, and begins the sprcading activation through the con­
cept hierarchy. The procedure may be divided into the following operations: 

ACTIVATION - The user introduces some empirical data representing 
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a real phenomenon (Description). The user may introduce them in ASCII Files. 
- CREA TING AN INITIAL STATE - Using heuristics derived from the 

problem (the goals expressed by the archaeologist), the system automatically 
creates a representation of the problem initial state, and stores it in the Activa­
tion Units. These computational entities look like Carr's Entry Models which 
link datato the inference mechanism (the technique) and not to the High-Level 
lnterpretation. In other words, a genera} model or description of the "form of 
organization" of the archaeological observables that represent the phenomenon 
of interest (the goal we want to evaluate) (CARR 1985, 1987). Therefore, Acti­
vation Units would inventory all general forms of organization of artifacts and 
artifacts' types that might logically occur in various environmental and be­
havioural contexts along various behavioural and formation-relevant dimen­
sions of variability. Each Unit is associated with a particular model of social for­
mation process that could have generated the form of organization described 
in the input data file. The quantity of such activation units can be very great, 
unrelated to the quantity of Higher-Level Concepts in the systems. Instead of 
the mathematical nature in Carr's entry models, GLADIUS's Activation Units 
are logical systems (production rules) (see FoRSYTH 1989, FoRSYTH, RADA 1986 
about the use of rules' systems for pattern recognition purposes) . 

- CALLING KNOWLEDGE UNITS - Activation Units represent the 
problem Initial State, and their function is to call the lowest theoretical entities. 
These concepts have their own activation conditions or experimental results 
about the association between some specific initial state and a concept ex­
pressed in observational terms. The Instantiation procedure looks like a Multi­
Expert System, and their rules bave the following representation fermat: 
If 

(x) is an attribute in some Activation Unit 
and 

(y) is a middle-range expression stored in a Concept 
and 

(x) is analogically Iinked to (y) 
then 

Activate that Concept. 
The analogica! relationship between (x) and (y) is the result of an indepen­

dent inference mechanism (see G1cK, HoLYOAK 1980, HoLYOAK, THAGARD 
1989, KEANE, BRAYSHAW 1988). This mechanism uses empirica! data as input 
and searches in the problem space if there is a low-level concept with a property 
"similar" to those in empirica! data. Once the link between empirical data and 
low-level concepts is established, the lnitial State of the problem inherits other 
properties from that concept . The inference mechanism is represented in Fig. 3. 
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Fig. 3 - A mechanism for analogica! inferencc. 

Low-Level Concepts do not contain information about their relationship 
with the evidence, but with the Activation Units. This information is exclusive­
ly expressed by the rules. In this way, the modification, updating and controlled 
experimentation with particular parts of the system become easier. 

- USING THE CONCEPT HIERARCHY - There are two kinds of links 
between concepts: hierarchy relationships (declarative and explicit links) be­
tween the objects within a class and analogies ("intelligent" links) between 
classes. The system automatically generates the analogical links at run-time, 
while the hierarchy relationships are implemented by the user after testing. The 
difference between them lies in the validated character of declarative links. 
Both are used as paths to guide spreading activation. In the first case, a High­
Level Concept is made active because its Lower-Level Concepts are also activat­
ed. Given the fact that the Activation Conditions in each concept are indepen­
dent from the Activation Conditions in other concepts, if some concept is not 
activated by the actual state in Activation Units, the inference chain is inter­
rupted, and the Highest Concept will be the last activated one (Fig. 4). 

- CONSTRUCTING A FIN AL SOLUTION - The answer is not the last 
activated theoretical entity, but a computational object (called Interpretation) 
which contains all the inferences, activations and modifications in the working 
memory. 

- REACTIVATION - To test unexpected associations or to replicate 
previous results, the system can descend the hierarchy chains that it has used 
and explore alternative forks. For example, let us suppose we are studying a 
group of prehistoric artistic representations (decorated stelae): if the Icono­
graphic Heterogeneity in a geographical and chronological series of stelae has 
allowed the System to confirm the existence of an important Social Differentia­
tion in this community, then in the Reactivation mode the system chooses an 
alternative hypothesis to the association "Iconographic Heterogeneity --+Socia} 
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Fig. 4 - Conceptual hierarchy in the GLADIUS system. 

Differentiation", perhaps "Functional Diversity in Settlement Structures --+ 

Social Differentiation". In other words, in order for the system to confirm the 
existence of Socia! Differentiation in this community, it must discover if there 
is Iconographic Heterogeneity between Stelae and Functional Diversity in Set­
tlement Structures. The same problem has always different initial states. 

To sum up, GLADIUS is a little more complex than classica! Expert Sys­
tems: in a rule-based system, for example, a rule is selected for firing when the 
elements in the working memory match the elements of the rule's condition; 
a match requires either that the elements be identica! or that the condition ele-
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ment be a variable of which the working-memory element is an Instantiation. 
In contrast, the analogica! mapping engine and the declarative hierarchy chains 
allow the generation of mappings between different kinds of elements. In GLA­
DIUS, the concept-firing process is essentially forward-chaining from starting 
conditions (empirica! information stored in a database file) to goals (interpreta­
tions}. In contrast, the validation procedure is essentially back-chaining, trying 
to evaluate the results using different and alternative inference steps. 

The activation of concepts spreads in a controlled manner (as specified in 
the problem-solving goals). Concepts declaratively linked to previously fired 
concepts become active, making available the inference chains employing those 
concepts. At this level, middle-range expressions are totally relational. For 
ex ampie: 
SOCIAL CONFLICT: 

Attributcs: (. .. ) 
Activation Conditions: (Appearancc of Social Elitcs) is ACTIVE 

APPEARANCE OF SOCIAL ELITES: 
Amibutes: ( ... ) 
Activation Conditions: (Sodai Rivalry) is ACTIVE 

(Social Differentiation) is ACTIVE 

Let us suppose that (Socia! Rivalry) and (Socia! Differentiation) are unrelated 
concepts belonging to different inference chains. Empirica! data only allow us 
to fire the (Socia! Differentiation) Concept. The inference chain stops at this 
point, starting then the analogica! engine: the most similar conccpt to the actual 
state of the working memory (or the lnterpretation Object) is probably the (Ap­
pearance of Socia! Elites) Concept. lt is an analogica! result, and nota solution 
to our problem. To obtain a good solution we have to validate the linking bet­
ween the actual contents in the working memory and the analogically activated 
Highest Concept. 

The best and easier way to generate that validation is by exploring alterna­
tive inference chains. In our example, given the fact, we bave used the (Sodai 
Differentiation) Chain to activate a plausible solution, the system wiff explore 
the (Socia! Rivalry) Chain. If all the Activation Conditions associated with this 
concept may be active by the input database1 we will conclude that the analogi­
ca! linking is a valid one. If this linking is validateci in different cases it will be 
changed into a declarative hierarchical link. 

The GLADIUS Project shows that the relation between archaeological arti­
facts and middle-range expressions (or Activation Conditions) is not of similari­
ty (correspondence among properties), but of analogy (correspondence among 
relations and rules). This analogy is not a necessary property of concept, but 
a scientific construct, the result of some reasoning testable process. Analogy is 
a multilevel reasoning process, a kind of activation function allowing the search 
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of the best heuristic solution in an enormous problem space. The mapping bet­
ween interpretative concepts (the base) and empirica! data (the target) is not di­
rect, but needs multiple inference steps, which are analogies too. We must con­
sequently characterize Archaeological Interpretations as complex inference 
chains, in which different kinds of middle-range expressions are needed. 

GLADIUS is not yet an "intelligent" program, but a project to build a 
future Archaeological Theory. lts limitations reproduce the limitations of a 
scientist at the beginning of his task: he knows a great number of middle-range 
expressions, a great quantity of empirica! data, and a few High-Level Concepts 
extracted from other Theories. The goal is to experiment if a Theory can be 
built only using those components. 

Only by running this system or another one like it, will we discover if an 
"Automatic" Theory (a theory expressed by means of a computer program) is 
or is not possible. 

6. CONCLUSIONS 

Archaeological Theories, like all theories, are symbolic structures, where 
symbols and relationships between symbols can be expressed by means of: 
- linguistic sentences 
- mathematical equations 
- logica! propositions. 
Some interesting work has been done on mathematical representation of ar­
chaeological theories (READ 1987, 1990), but such approaches bave not been ve­
ry successful, maybe because Social Sciences cannot be exclusively represented 
by mathematical models, or because archaeologiits are incapable of communicat­
ing between themselves using mathematical expressions. As a consequence, ar­
chaeologists tend to express their theories by means of linguistic sentences, 
which is inadequate, given the fact that Natural Language obstructs objectivity 
(GARDIN 1990). A representation in terms of logica! propositions appears then 
as the best representation tool available to build socia! theories. 

Artificial Intelligence scientists are now exploring this possibility (see LAN­
GLEY et al. 1987; SHRAGER, LANGLEY 1990; GARDIN et al. 1989; TILES et al. 
1990). The GLADIUS project is another attempt in this direction. It proposes 
an analogy between the structure of Archaeological (and Socia! Sciences) Theo­
ries and the mechanism of Turing Machines: given some empirica! data (obser­
vation of the archaeolog1cal record) and a Knowledge-Base (constituted by 
High-Level Concepts and their middle-range correlates), we have to explain the 
particular case (the archaeological record) by means of the Knowledge-Base (the 
Theory). The logica! mechanism is modus ponens. 
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The "creation" of High-Range Theories is an unsolved problem in GLA­
DIUS. Most of the scientists use Interpretative Concepts existing in his/her so­
dai ideology, that is to say, produced by an alleged knowledge (a received know­
ledge) gained culturally, not through research in the strict sense of the word. 
Therefore, theoretical entities are, in a certain sense, "independent" from the 
scientist's goals. Some interesting work has been clone on this subject (STo­
KOCZWSKI 1991), but we need more empirica! research on the cognitive basis 
of scientific explanations. 

The real interest of GLADIUS and Intelligent databases for archaeologists 
is not the production of new data or new explanations, but reasoning about the 
way to connect both pieces of information. Concepts are expressed always in 
theoretical terms, and empirica} data in observational ones. Their logical nature 
is so different that it is not possible to establish a connection between them. 
This is the function of Middle-Range propositions, which express the result of 
some controlled experiments. We have also seen that Middle-Range proposi­
tions are not isolated affirmations, but a hierarchically organized theory in its 
own way. 

The last important idea in GLADIUS is "Activation": a logica! function 
that measures the association level between evidence and interpretation. As we 
have seen it depends on the particular values of the different middle-range ex­
pressions we have obtained experimentally and implemented in the program. 
Consequently, any activation function is partial, and does not explore all possi­
ble alternatives, but only the declared ones. Middle-Range Theories will not 
then be independent knowledge bases, but heuristic rules whose function is to 
guide the search for the best solution in a potentially very great set of interpre­
tations (the greater the problem space, the more useful the resulting automatic 
theory) . 
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ABSTRACT 

In this paper I have tried to build a Computational Theory. In other words, a "theory" im­
plemented in a computer program. When using a computational theory we try to solve scientific 
problems, that is to say, wc do not retrieve data units, but we "instantiate" a solution for the 
problem. I have formalized the concept of Archaeological Prob/em in the following way: how is 
used an artifact (or set of artifacts) by a community in a specific context. The task is then to evaluate 
the socia! uses of some specific set of artifacts (Final Situation or State) in terms of: a) their descrip­
tion, and b) all information available about the sodai, cultura! or chronological context and about 
the human community who produced those artifacts (lnitial Situation or State). 

Wc may then represent problem-solving knowledge as a list of discrete and closed units. Those 
declarative units are successive states of the problem. We substitute equations for explicit sets 
of propositions. We can implementa set of answers and a set of decision rules for each one. The 
resulting program looks likc a complex database and not like a mathematical procedure, and wc 
may considcr thc problem-solving mechanism as a sequential search in a preexisting problem space, 
using a finite number of particular decision rulcs. 

Some interesting work has been clone in mathernatical reprcscntation of archaeological the­
ories, but such approaches have not been very successful, maybe because Sodai Scicnces cannot 
be exclusively rcprcsentcd by mathematical models, or because archaeologists are incapable to com­
municate between themselves using mathcmatical expressions. As a consequencc, archaeologists 
tend to exprcss their theories by means of linguistic sentcnces, which is inadequate, given the 
fact that Natural Language obstructs objectivity. A representation in terms of logica! propositions 
appears thcn as the best representation tool available to build socia! theories. 

Artificial Intelligence scientists are now exploring this possibility. In this paper I propose 
an analogy between the structurc of Archeologica! (and Socia! Scienccs) Theories and the mechanism 
of Turing Machines: given some empirica! data (observation of the archaeological record) and a 
Knowledge-Basc (constituted by high-level conccpts and thcir middle-range correlates), we have 
to explain thc particular case (the archaeological record) by means of the Knowlcdge-Base (the 
Theory). Thc logica! mechanism is modus ponens. 
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