AUTOMATIC PROBLEM-SOLVING IN ARCHAEOLOGY:
A COMPUTATIONAL FRAMEWORK

One of the recurrent words in post processualist archaeology is the term
meaning, maybe as a result of structuralism and semiotics influence. In this
paper I deal with the computer representation of archaeological meanings from
a processual view. I do not pretend to discover meanings computationally, but
to study by means of 2 computer program the task archaeologists do. I am in-
terested in ‘“‘meanings’’ as a theoretical construct, and not as those ‘‘mental
states”’ in past minds. Therefore, the computational analysis I propose is not
a cognitive reconstruction, but a description of problem-solving mechanisms used
by archaeologists. This analysis is not a defense of a positivist theory of archaeo-
logical meanings, nor a rebuttal of post-processualist or contextual ideas, but the
strict analysis of the logical basis of archaeological discourse and reasoning.

1. ARCHAEOLOGICAL MEANINGS

Archaeologists usually say they need to discover the “‘meaning’’ of archaeo-
logical artifacts and ecofacts. They have also developed an enormous set of
techniques to be able to obtain such ‘‘discoveries”. In this context, ‘‘meaning”’
looks like a necessary category of real entities, therefore the task of scientists
will be finding out that hidden characteristic.

In this paper, however, I propose a different definition for ‘“meaning”’:
“the uses of the artifact’”’. ““Meaning” is not an intrinsic property of any ar-
chaeological artifact. A single object can be used in many ways, depending on
the context or the users’ needs. Therefore, archaeological artifacts have not the
same meaning in all circumstances, because there is not a single way of using
it. It is not the object that chooses its utilization, but users according to con-
texts.

This definition of meaning is hardly novel in other disciplines, like Linguis-
tics, Psychology or Computer Science (SEARLE 1979; Fopor 1981; WINOGRAD
1983; GraEssER, CLARK 1985; CumMiIns 1989, among others). In literary and
philological studies, the meaning of a message lies not only in the text, because
the meaning of that text is a cognitive construct determined by different infor-
mation sources. The first one is obviously the explicit content in the message
(the text). The second source of information consists in the knowledge stored
in the receiver’s long-term memory. The third one constitutes the receiver’s ob-
jectives. The fourth, and last source of information, is the context in which the
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message has been produced. It includes social relations between transmitter and

receiver, shared knowledge between participants in communicative events, and

principles of cooperative communication.

It is not very clear that an archaeologist is involved in a communication act
when he tries to explain the archaeological record. Who is the transmitter in
that situation? Artifacts themselves or the people who made those artifacts? Let
us suppose that the artifact is the transmitter, because it is the only we know
about the real transmitter. If that analogy were valid, then we would describe
the “‘archaeological understanding act” as a system with the following compo-
nents (Fig. 1):

— A transmitter (archaeological record): we suppose that the artifact’s shape
and deposition process are some kind of “text” containing ““instructions”’
that allow us to understand the way in which that artifact was used.

— A receiver: an archaeologist with the technical training needed to under-
stand the archaeological record.

— Knowledge accepted by the Scientific Community to which the archaeolo-
gist belongs, that is to say, a Scientific Theory.

—  Goals proposed by the archaeologist before his beginning with the explana-
tion.

— A context or situation, that is to say, a set of previously understood ar-
chaeological meanings, which affect the understanding of the new one. For
example, the explanation of the ‘“meaning’ of a site depends on the mean-
ings obtained from the analysis of other sites around it. In other words, the
meaning of an artifact depends on the meanings of the artifacts around it.

From this discussion we must deduce that any interpretation of archaeologi-
cal remains is a theory, even though it makes no reference to theoretical issues
(ABELsoON, LALLJEE 1988; GarpiN 1990). Archaeological Meanings are cogni-
tive constructs, the result of some inference mechanisms. Archaeologists cannot
discover the meaning of the archaeological record; they have to *‘build”’ it, and
to achieve this reasoning process archaeologists need ‘‘knowledge’’. This paper
deals with the analysis of that knowledge.

2. MiopLeE-Rance THEORIES

One way to describe prior archaeological knowledge is by using the notion
of Middle-Range Theories, proposed by Robert Merton in Sociology, and in-
troduced in archaeology by Binford (1977; 1981) and by Raab and Goodyear
(1984).

In “traditional Archaeology’ the stipulation of meanings to data was im-
plicit, and the main mechanism was common sense. According to Binford, most
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Fig. 1 — A scheme for building Archaeological Meanings.

justifications for such stipulations were ill-founded and generally wrong,
produced by an alleged knowledge (a received knowledge) gained culturally, not
through research in the strict sense of the word. The only way to solve the
problem would be to use prior “‘scientific’” knowledge. That is to say, a theory
that relates the observed data to the processes that lead to them. However, this
knowledge does not exist in the past. An archaeologist cannot certainly learn
about the quality of the needed prior knowledge by studying the archaeological
record, where meaning is infused by “‘common sense” justifications (BINFORD
1989). Prior knowledge has to be obtained independently of the analysis of the
archaeological record.

Archaeologists usually obtain this kind of “‘scientific” prior knowledge
through actualistic or ethnoarchaeological research. In this paper, the ““‘produc-
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tion” of such knowledge does not interest us, but its use to solve a specific
problem. In Binford’s words:

« We seek to analyze our data and partition our knowledge into general, uniformitarianistic
knowledge that can serve as a frame of reference. Against this frame of reference we can project
or compare other properties of the archaeological record that are also understood in generalizable
but independent terms in order to isolate the organizational characteristics of past systems. In
both cases, we would initially be seeking to recognize and understand properties that have general
relevance to human actions ... These broad generalizable properties would then serve as an ana-
lytical frame of reference against which we could discern extensive behavioral variability. In the
context of such similar organizations, very different 'behaviors’ (in Schiffer’s sense of the word)
might be carried out » (BinrorD 1987).

Middle-Range Theories will then appear like universal generalizations, used
as premises in a deductively reasoned interpretation of the archaeological re-
mains. These universal arguments specify the archaeological observables that
are expected to manifest particular phenomena of interest, and/or their expect-
ed nature of organization (CARr 1985, 1987).

In other words, we use Middle-Range Theories to deduce hypotheses. The
logical pattern implicit in the use of such deductions is the following:

If x is an instance of X

And X is Y.

Then, x is Y.

“Xis Y is the result of some controlled experiment (a universal generalization
obtained through observation of present dynamics) and we may use it as a
criterion of relevance because of its testability. Interesting examples would be
Hoffman (1985) and O’Shea (1984). The first one employs principles of lithic
technology to select several variables for investigating morphological variation
in a set of projectile points relevant to maintenance and reduction process. The
second one specifies the kinds of mortuary variables that are likely to distin-
guish horizontally or vertically differentiated social segments; these variables al-
low the selection of the potentially relevant variables for a factor analysis.

Let us analyze the following example, from Binford (1984): the specific
animal bones common at the residence of one family are generally low or absent
at the locations of other consumer units within the same site. This condition
derives from the fact that different anatomical segments are the units shared
out by hunters. This means that the anatomical units, which are represented
by only one element from a single individual, such as the skull or the neck, if
present within one site will only be present at a single residence or consumer
unit within the site.

The values of the three former variables are:

x = animal bones found at a particular residential unit

X = food
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Y = sharing of food after collective hunting.

In “laboratory’’ conditions (for instance, in an ethnoarchaeological research)
some archaeologists have observed that food is shared between all members of
the hunting group. That action produces a non ambiguous material trace in the
deposition of bones in each consumer (residential) unit. If we observe during
the excavation of an archaeological site a deposition of bones similar to that ob-
tained trough experimentation, then the conclusions will be the same.

The main limitation in Binford’s description of Middle-Range Theories is
the lack of structure within the Theory (see criticism in SCHIFFER 1988; WYLIE
1989). A Middle-Range Theory in Binford’s terms looks like a set of indepen-
dent universal propositions, used when an archaeologist finds an analogous
case. Experimental results can be relevant, but the application of the theory to
the evidence not. The process is most similar to an assignation of meaning than
a meaning construction.

In this paper I mainly aim to formulate an adequate architecture for Middle-
Range Theories, specifically one allowing computational implementation and
execution.

3. AutoMATIC PROBLEM-SOLVING

We can define a problem as a goal we want to achieve but we do not know
how. Computer Scientists translate this single definition into the following
terms: « the modification of an Initial State so that it matches an expression
whose truth-value (or validation conditions) needs to be determined ». The so-
lution to the problem will then be the truth-value or validation conditions of
this expression (the goal). We validate a goal if there is a well-defined operator
allowing the modification of the Problem Initial State until it matches the
truth-conditions of the Final State or solution (see PearL 1985; LAURIERE
1986; BrownN, CHANDRASEKARAN 1989; SHARPLES ef al. 1989; Boy 1990; Par-
TRIDGE 1990).

In Archaeology, our goals are obviously the meanings of the archaeological
record, that is to say, the social or technical uses of artifacts and ecofacts. We
may formalize an Archaeological Problem in the following way: how an artifact
A (or set of artifacts A) is used by a community H in a context C; where the con-
text of utilization may be spatial, social, chronological, etc. (Fig. 2). This
problem has four components:

—  The artifact or set of artifacts (A).

— The human community who produced those artifacts (H).
— The context of use of the artifacts (C).

— The use of the artifacts (the goa/ of the problem).
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Fig. 2 — A decomposition on Archaeological Problems.

The task is then to evaluate the social uses of some specific set of artifacts
{Final Situation or State) in terms of: a) their description, and b) all information
available about the social, cultural or chronological context and about the hu-
man community who produced those artifacts (Initial Situation or State).

To solve any problem we need knowledge about all the different possible
states. Final and Intermediate Situations (in other words, solutions and infer-
ence steps) have to be encoded in some explicit way. We call it the problem
space, and we may represent it in procedural or declarative form. The first one
follows a well-defined algorithm, which specifies explicitly how to find the out-
put variables for any given input variables. If this were the case:

—  There would be a definite criterion for testing any proposed solution, and
a mechanizable process for applying the criterion. There has to be a
description of the solution state, or a test to determine if that state has
been reached.

— There would be at least one problem space in which the initial problem
state, the goal state, and all other states that may be reached or considered
can be represented, while attempting a solution of the problem. There
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exists a set of terms for describing and characterizing the initial state, the
goal state and the intermediate states.

— Attainable state changes (legal moves) in a problem space are the transi-
tions from given states to the states directly attainable from them. There
has to be a set of operators to change one state into another, with condi-
tions for the applicability of these operators (Simon 1973; PoprLE 1982).

For instance, given the lengths of the two shortest sides of a rectangular tri-
angle, “find the length of the third side” is a problem, which is solved
procedurally. In other terms, there exists an operator “v{x + y)”’, which
produces the required solution from the given initial state (the lengths of the
two shortest sides); there also exists a criterion (Pythagoras Theorem) to vali-
date that solution. In this case, solutions and inference steps are produced
through an algorithm, and they use the Initial State as raw material.

However, “Meaning of x?”’, where (x) is an archaeological artifact, cannot
be solved in the same way, because “‘meaning” is not a fixed procedure. In other
terms, there does not exist any procedure to generate solutions and inference
steps. In this case:

— There is not any single criterion to validate selected solutions.

— There is not any mechanizable procedure to apply that criterion.

— The Problem Space (the set of all possible solutions) is not well defined.

Are archaeological problems then unsolvable? Not at all. If we cannot

‘“‘generate”’ problem spaces by means of a procedure, we may then represent
problem-solving knowledge as a list of discrete and closed units. Those declara-
tive units are successive states of the problem. We substitute equations for ex-
plicit sets of propositions. For example, there is no algorithm to discover the
technical function of a lithic tool from its shape. We can implement a set of
answers (knife, scrapers, spear...) and a set of decision rules for each one. The
resulting program looks like a complex database and not like a mathematical
procedure, and we may consider the problem-solving mechanism as a sequential
search in a pre-existing problem space, using a finite number of particular deci-
sion rules.

4. Heuristic RuLes anp MippLE-RANGE EXPRESSIONS

In a procedural problem-solving method we have probably enough with only
one equation; but in a declarative problem-solver we need a great number of
very specific decision rules. These rules look like Stimulus/Response pairs,
where the Stimulus and the Response are sets of descriptive features defining
a particular knowledge unit (or state of the problem). The representation for-
mat (production rule) is:
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If A

Then B
Where A and B are two declarative states of the problem (for instance, an Ini-
tial and a Final State or two Intermediate States). This rule establishes a rela-
tionship among a set of facts in an IF clause and one or more facts in a THEN
clause.

Using the previous example (BiNFORD 1984):

If
the animal bones found at the residential unit (x) are different from the animal bones
found at the residential unit (y)
and
in controlled laboratory situations it has been demonstrated that such differences in the
animal bones deposition between consumer or residential units are the result of the shar-
N ing of food between the members of a hunting group,
then

people who lived and ate in (x) and (y) would belong to the same hunting group.

We have here three declarative knowledge units, two of them are states of
the problem and the third one is a condition (or Middle-Range Expression) for
the activation of that rule:

Initial State: the animal bones found at two residential units (Observation).

Final State: a single hunting group (an Anthropological Concept and a Theo-

retical Term).

Middle-Range Expression: differences in the animal bones’ deposition be-

tween consumer and residential units are the result of food sharing between

the members of a hunting group (Experiment).

“A single hunting group’ is an explanatory concept, a declarative prior
knowledge unit, and not the result of some mechanical procedure. The goal we
want to achieve is to evaluate the expression: « people who lived and ate in (x)
and (y) would belong to the same hunting group ». This evaluation is possible
because we dispose of a middle-range expression (a condition) which activates
a production rule expressing the association between the evidence and the in-
terpretation.

The ideal form of any decision rule in a declarative problem-solver is:

IF

[EMPIRICAL DATA]
and

[ACTIVATION CONDITION] is a property of [SOLUTION]
and

there is an analogical link between [EMPIRICAL DATA] and ACTIVA-

TION CONDITION]

THEN
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[EMPIRICAL DATA] is an instance of [SOLUTION].

In other words, the linking between a particular evidence and a particular inter-
pretation unit is only possible if the rule is made active. This situation succeeds
only if there is some independent activation condition analogically linked to em-
pirical data. Activation conditions are obviously the middle-range expressions.

Middle-Range Expressions are sufficient (and not necessary) properties of
Interpretative Concepts and Theoretical Entities. Without them, Interpreta-
tions are passive sets of propositions, useless in a problem-solving task. They
do not work as General Laws, but they reduce the range of possible interpreta-
tions for an archaeological problem: independent experimental results serve to
make active Concepts, because they allow possible links between the Observa-
tion and the Theory. Nevertheless, given the fact that decision rules and
declarative concepts are discrete units, their activation will be never definitive.
We must deduce that there are other ways to make active an Interpretation. To
solve this limitation, Computer Scientists and Cognitive Psychologists have in-
troduced the notion of heuristics as an alternative to the ““truth conditions’ of
procedurally obtained solutions (NEWELL, StMoN 1972, 1976; NEwWELL 1973,
1980; Stmon 1973, 1979, 1983). The Heuristic Conditions for the Activation
of a declarative solution are a set of some plausible criteria to accept or refuse
the final state of a problem as its solution. That means that the solution is not
“true”, but “plausible’: it is a good solution, although we cannot know if it
is the best one we can produce with that set of declarative knowledge. Thus,
Middle-Range Expressions are the Heuristic Conditions for the proper activa-
tion of Interpretative Concepts.

This is the most important aspect we have to learn from the above discus-
sion: an Archaeological Middle-Range Theory is not a Universal Theory about
Human Culture, but a kind of declarative problem-solving knowledge, heuristi-
cally relevant to a particular archaeological problem. Heuristic does not mean
“subjective’’, but ‘‘a plausible way to use a particular declarative knowledge”.
Maybe there are infinite possible ways to use them, but we will use the only
one we have tested.

5. AN INTELLIGENT DATABASE

Middle-Range Theories are usually very complex, because they cannot be
reduced to single and independent expressions. In this chapter I will develop
an example of ‘‘automatic” Middle-Range Theory, the GLADIUS project, ac-
tually underway at the Universitat Autonoma de Barcelona (Spain) (BARCELG
1991a, 1991b). The aim of the program is to analyze the complexities around
the linking, structuring and spreading activation in a computer system contain-
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ing a great number of middle-range expressions.

GLADIUS is an Intelligent Database, that is to say, a Database able to use
its contents automatically to solve archaeological problems. To achieve this
task, it does not contain simple data and search procedures, but complex
knowledge units (concepts) and built-in inference mechanisms.

GLADIUS implements an archaeological theory about the social uses of ar-
tifacts. It answers questions like: « Did that human community use these ob-
jects as social symbols, that is to say, as symbols for social identity? » The com-
ponents of this Theory are the following:

— Different sets of interpretative concepts extracted from standard social
theory (Consumer Sociology and Economic Anthropology).

— Hierarchical relationships between the concepts.

— An activation mechanism that uses data sets containing empirical observa-
tions.

— An analogical mechanism that searches for new unexpected associations
between concepts.

Concepts are represented using a computational data structure called

« FRAME ». It is an individual object, defined by some attributes. For example

(STUTT 1989):

PRINCIPLE:

name: marxist—principle—1

claim: cause (class division, conflict within groups)

grounds: common—sense—principle—2

PRINCIPLE:
name: common—sense—principle—2
claim: cause (divisions between groups based on X; conflict within groups based on X)
grounds: basic—ground

where “name”, “claim” and “‘grounds’ are attributes. GLADIUS uses three

kinds of attributes:

— Structural: definition characteristics of each concept.

— Relational: the specific role of that knowledge unit in the problem-solving
task, that is to say, some kind of meta-knowledge about the computer im-
plementation of that concept.

— Activation Conditions: some ‘‘scientific’’ proposition generated by ex-
perimentation or by deduction about the strength of that concept and the
nature of links converging on it from the other concepts in the system.

Concepts are organized in a hierarchical network according to the quantity
of observational terms used to define their Structural Attributes: the more ob-
servational terms, the lower level in the network. For example, a Concept like

“Sociotechnical Item’’ has a lower level than the Concept ““Social Conflict”.

Inheritance links are defined between all hierarchical levels, in such a way that

‘
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instances automatically receive information from their higher linked units.

Inheritance links only have an indirect relevance on the Activation Condi-
tions attributes. There are some differences between the activation conditions
for Low-Level Concepts and the activation conditions for High-Level ones. In
both cases, these attributes contain middle-range expressions, but in the
Lowest-Level Concepts they are expressed in observational terms, and in higher
levels as a set of previously activated concepts.

For example, the concept “‘Sociotechnical Item” is the lowest concept in
a chain whose terminal (highest) concept is *‘Social Conflict”. Activation Con-
ditions for the first concept are expressed in observational terms: « if object {x)
has been found in a grave, then it is a Sociotechnical Item ». Activation Condi-
tions for the concept “‘Social Conflict” are: « If the Concepts: (Sociotechnical
Item), (Controlled Distribution), (Social Rivalry), (Appearance of Social Elites)
are active, then the Solution will be (Social Conflict) ». Binford’s Middle-
Range-Expressions only appear in the Lowest-Level Concepts. The Activation
Conditions for High-Level Concepts are also middle-range expressions, but
they are more like Gardin’s « Intermediate Propositions (Pi) » than Binford’s
« frames of reference ».

Lowest-Level Concepts are consequently the instances of High-Level ones,
because they work as their activation conditions. Of course, the declarative
links between them are also “‘scientific”” and testable pieces of information,
although not experimental (the number of observational terms is too reduced).
Most of the time we implement them deductively, as a subdivision of the
Highest ones. Not all the concepts in GLADIUS are organized hierarchically;
only concepts with tested relationships are structured in “‘inference chains”.
The resulting system is a set of independent chains (which can be very long or
very short), whose links will be established through analogical inference. By
running the program we will obtain positive or negative tests of all these links,
declarative or automatically generated.

GLADIUS also contains a set of unrelated knowledge units called Activa-
tion Units. They are not Interpretations or Concepts, but computational enti-
ties able to translate input information (empirical information contained in a
classical Database) into the same terms as the Lowest-Level Concepts Activa-
tion Conditions.

First, the system assumes that the user has asked for a specific problem. The
user introduces some empirical descriptive features, which are read by the sys-
tem and stored in the Activation Unit. This unit activates the lowest instances
of Theoretical Entities, and begins the spreading activation through the con-
cept hierarchy. The procedure may be divided into the following operations:

— ACTIVATION - The user introduces some empirical data representing

71



J.A. Barcelo

a real phenomenon (Description). The user may introduce them in ASCII Files.

— CREATING AN INITIAL STATE - Using heuristics derived from the
problem (the goals expressed by the archaeologist), the system automatically
creates a representation of the problem initial state, and stores it in the Activa-
tion Units. These computational entities look like Carr’s Entry Models which
link data to the inference mechanism (the technique) and not to the High-Level
Interpretation. In other words, a general model or description of the ““form of
organization’ of the archaeological observables that represent the phenomenon
of interest (the goal we want to evaluate) (CArr 1985, 1987). Therefore, Acti-
vation Units would inventory all general forms of organization of artifacts and
artifacts’ types that might logically occur in various environmental and be-
havioural contexts along various behavioural and formation-relevant dimen-
sions of variability. Each Unit is associated with a particular model of social for-
mation process that could have generated the form of organization described
in the input data file. The quantity of such activation units can be very great,
unrelated to the quantity of Higher-Level Concepts in the systems. Instead of
the mathematical nature in Carr’s entry models, GLADIUS’s Activation Units
are logical systems (production rules) (see ForsyTr 1989, ForsyTH, RADA 1986
about the use of rules’ systems for pattern recognition purposes).

— CALLING KNOWLEDGE UNITS - Activation Units represent the
problem Initial State, and their function is to call the lowest theoretical entities.
These concepts have their own activation conditions or experimental results
about the association between some specific initial state and a concept ex-
pressed in observational terms. The Instantiation procedure looks like a Multi-
Expert System, and their rules have the following representation format:

If

(x) is an attribute in some Activation Unit
and

() is a middle-range expression stored in a Concept
and

(x) is analogically linked to (y)
then

Activate that Concept.

The analogical relationship between (x) and (y) is the result of an indepen-
dent inference mechanism (see Gick, HoLyoak 1980, HoLyoAk, THAGARD
1989, Keane, BraysHaw 1988). This mechanism uses empirical data as input
and searches in the problem space if there is a low-level concept with a property
“similar’’ to those in empirical data. Once the link between empirical data and
low-level concepts is established, the Initial State of the problem inherits other
properties from that concept. The inference mechanism is represented in Fig. 3.
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Fig. 3 — A mechanism for analogical inference.

Low-Level Concepts do not contain information about their relationship
with the evidence, but with the Activation Units. This information is exclusive-
ly expressed by the rules. In this way, the modification, updating and controlled
experimentation with particular parts of the system become easier.

— USING THE CONCEPT HIERARCHY - There are two kinds of links
between concepts: hierarchy relationships (declarative and explicit links) be-
tween the objects within a class and analogies (“‘intelligent” links) between
classes. The system automatically generates the analogical links at run-time,
while the hierarchy relationships are implemented by the user after testing. The
difference between them lies in the validated character of declarative links.
Both are used as paths to guide spreading activation. In the first case, a High-
Level Concept is made active because its Lower-Level Concepts are also activat-
ed. Given the fact that the Activation Conditions in each concept are indepen-
dent from the Activation Conditions in other concepts, if some concept is not
activated by the actual state in Activation Units, the inference chain is inter-
rupted, and the Highest Concept will be the last activated one (Fig. 4).

— CONSTRUCTING A FINAL SOLUTION - The answer is not the last
activated theoretical entity, but a computational object (called Interpretation)
which contains all the inferences, activations and modifications in the working
memory.

— REACTIVATION - To test unexpected associations or to replicate
previous results, the system can descend the hierarchy chains that it has used
and explore alternative forks. For example, let us suppose we are studying 2
group of prehistoric artistic representations (decorated stelae): if the Icono-
graphic Heterogeneity in a geographical and chronological series of stelae has
allowed the System to confirm the existence of an important Social Differentia-
tion in this community, then in the Reactivation mode the system chooses an
alternative hypothesis to the association “Iconographic Heterogeneity — Social
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Fig. 4 — Conceptual hierarchy in the GLADIUS system.

Differentiation”, perhaps ‘‘Functional Diversity in Settlement Structures —
Social Differentiation”. In other words, in order for the system to confirm the
existence of Social Differentiation in this community, it must discover if there
is Iconographic Heterogeneity between Stelae and Functional Diversity in Set-
tlement Structures. The same problem has always different initial states.

To sum up, GLADIUS is a little more complex than classical Expert Sys-
tems: in a rule-based system, for example, a rule is selected for firing when the
elements in the working memory match the elements of the rule’s condition;
a match requires either that the elements be identical or that the condition ele-
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ment be a variable of which the working-memory element is an Instantiation.
In contrast, the analogical mapping engine and the declarative hierarchy chains
allow the generation of mappings between different kinds of elements. In GLA-
DIUS, the concept-firing process is essentially forward-chaining from starting
conditions (empirical information stored in a database file) to goals (interpreta-
tions). In contrast, the validation procedure is essentially back-chaining, trying
to evaluate the results using different and alternative inference steps.

The activation of concepts spreads in a controlled manner (as specified in
the problem-solving goals). Concepts declaratively linked to previously fired
concepts become active, making available the inference chains employing those
concepts. At this level, middle-range expressions are totally relational. For
example:

SOCIAL CONFLICT:

Attributes: (...)
Activation Conditions: (Appearance of Social Elites) is ACTIVE

APPEARANCE OF SOCIAL ELITES:

Attributes: (...)

Activation Conditions: (Social Rivalry) is ACTIVE

(Social Differentiation) is ACTIVE

Let us suppose that (Social Rivalry) and (Social Differentiation) are unrelated
concepts belonging to different inference chains. Empirical data only allow us
to fire the (Social Differentiation) Concept. The inference chain stops at this
point, starting then the analogical engine: the most similar concept to the actual
state of the working memory (or the Interpretation Object) is probably the (Ap-
pearance of Social Elites) Concept. It is an analogical result, and not 2 solution
to our problem. To obtain a good solution we have to validate the linking bet-
ween the actual contents in the working memory and the analogically activated
Highest Concept.

The best and easier way to generate that validation is by exploring alterna-
tive inference chains. In our example, given the fact, we have used the (Social
Differentiation) Chain to activate a plausible solution, the system will explore
the (Social Rivalry) Chain. If all the Activation Conditions associated with this
concept may be active by the input database, we will conclude that the analogi-
cal linking is a valid one. If this linking is validated in different cases it will be
changed into a declarative hierarchical link.

The GLADIUS Project shows that the relation between archaeological arti-
facts and middle-range expressions (or Activation Conditions) is not of similari-
ty (correspondence among properties), but of analogy (correspondence among
relations and rules). This analogy is not a necessary property of concept, but
a scientific construct, the result of some reasoning testable process. Analogy is
a multilevel reasoning process, a kind of activation function allowing the search
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of the best heuristic solution in an enormous problem space. The mapping bet-
ween interpretative concepts (the base) and empirical data (the target) is not di-
rect, but needs multiple inference steps, which are analogies too. We must con-
sequently characterize Archaeological Interpretations as complex inference
chains, in which different kinds of middle-range expressions are needed.

GLADIUS is not yet an ‘“‘intelligent” program, but a project to build a
future Archaeological Theory. Its limitations reproduce the limitations of a
scientist at the beginning of his task: he knows a great number of middle-range
expressions, a great quantity of empirical data, and a few High-Level Concepts
extracted from other Theories. The goal is to experiment if a Theory can be
built only using those components.

Only by running this system or another one like it, will we discover if an
“‘Automatic’”’ Theory (a theory expressed by means of a computer program) is
or is not possible.

6. CONCLUSIONS

Archaeological Theories, like all theories, are symbolic structures, where

symbols and relationships between symbols can be expressed by means of:
— linguistic sentences
— mathematical equations
— logical propositions.
Some interesting work has been done on mathematical representation of ar-
chaeological theories (READ 1987, 1990), but such approaches have not been ve-
ry successful, maybe because Social Sciences cannot be exclusively represented
by mathematical models, or because archaeologists are incapable of communicat-
ing between themselves using mathematical expressions. As a consequence, ar-
chaeologists tend to express their theories by means of linguistic sentences,
which is inadequate, given the fact that Natural Language obstructs objectivity
(GARDIN 1990). A representation in terms of logical propositions appears then
as the best representation tool available to build social theories.

Artificial Intelligence scientists are now exploring this possibility (see LAN-
GLEY et al. 1987; SHRAGER, LANGLEY 1990; GARDIN e al. 1989; TiLES et al.
1990). The GLADIUS project is another attempt in this direction. It proposes
an analogy between the structure of Archaeological (and Social Sciences) Theo-
ries and the mechanism of Turing Machines: given some empirical data (obser-
vation of the archaeological record) and a Knowledge-Base (constituted by
High-Level Concepts and their middle-range correlates), we have to explain the
particular case (the archaeological record) by means of the Knowledge-Base (the
Theory). The logical mechanism is modus ponens.
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The “‘creation” of High-Range Theories is an unsolved problem in GLA-
DIUS. Most of the scientists use Interpretative Concepts existing in hisfher so-
cial ideology, that is to say, produced by an alleged knowledge (a received know-
ledge) gained culturally, not through research in the strict sense of the word.
Therefore, theoretical entities are, in a certain sense, ‘‘independent’” from the
scientist’s goals. Some interesting work has been done on this subject (Sto-
KOCZWSKI 1991), but we need more empirical research on the cognitive basis
of scientific explanations.

The real interest of GLADIUS and Intelligent databases for archaeologists
is not the production of new data or new explanations, but reasoning about the
way to connect both pieces of information. Concepts are expressed always in
theoretical terms, and empirical data in observational ones. Their logical nature
is so different that it is not possible to establish a connection between them.
This is the function of Middle-Range propositions, which express the result of
some controlled experiments. We have also seen that Middle-Range proposi-
tions are not isolated affirmations, but a hierarchically organized theory in its
own way.

The last important idea in GLADIUS is “‘Activation”: a logical function
that measures the association level between evidence and interpretation. As we
have seen it depends on the particular values of the different middle-range ex-
pressions we have obtained experimentally and implemented in the program.
Consequently, any activation function is partial, and does not explore all possi-
ble alternatives, but only the declared ones. Middle-Range Theories will not
then be independent knowledge bases, but heuristic rules whose function is to
guide the search for the best solution in a potentially very great set of interpre-
tations (the greater the problem space, the more useful the resulting automatic
theory).
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ABSTRACT

In this paper I have tried to build a Computational Theory. In other words, a ““theory’ im-
plemented in a computer program. When using a computational theory we try to solve scientific
problems, that is to say, we do not retrieve data units, but we *‘instantiate” a solution for the
problem. I have formalized the concept of Archaeological Problem in the following way: how is
used an artifact (or set of artifacts) by a community in a specific context. The task is then to evaluate
the social uses of some specific set of artifacts (Final Situation or State) in terms of: a) their descrip-
tion, and b) all information available about the social, cultural or chronclogical context and about
the human community who produced those artifacts (Initial Situation or State).

We may then represent problem-solving knowledge as a list of discrete and closed units. Those
declarative units are successive states of the problem. We substitute equations for explicit sets
of propositions. We can implement a set of answers and a set of decision rules for each one. The
resulting program looks like a complex database and not like a mathematical procedure, and we
may consider the problem-solving mechanism as a sequential search in a preexisting problem space,
using a finite number of particular decision rules.

Some interesting work has been done in mathematical representation of archaeological the-
ories, but such approaches have not been very successful, maybe because Social Sciences cannot
be exclusively represented by mathematical models, or because archaeologists are incapable to com-
municate between themselves using mathematical expressions. As a consequence, archaeologists
tend to express their theories by means of linguistic sentences, which is inadequate, given the
fact that Natural Language obstructs objectivity. A representation in terms of logical propositions
appears then as the best representation tool available te build social theories.

Artificial Intelligence scientists are now exploring this possibility. In this paper I propose
an analogy between the structure of Archeological (and Social Sciences) Theories and the mechanism
of Turing Machines: given some empirical data (observation of the archaeological record) and a
Knowledge-Base (constituted by high-level concepts and their middle-range correlates), we have
to explain the particular case (the archaeological record) by means of the Knowledge-Base (the
Theory). The logical mechanism is modus ponens.
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