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THE BIRTH AND HISTORICAL DEVELOPMENT OF 
COMPUTATIONAL INTELLIGENCE APPLICATIONS  

IN ARCHAEOLOGY

1. Introduction

Is it possible to build a machine to do archaeology? Will this machine 
be capable of acting like a scientist? Will this machine be capable of under-
standing how humans act, or how humans think they acted in the Past? These 
questions are rather original in Archaeology. They are even provocative, given 
the current fashion of post-modern and hermeneutic approaches. Nevertheless, 
the dream of an automated archaeology has existed latently in some hidden 
places of the archaeology.

The so called “intelligent” machines incite instinctive fear and anger by 
resembling ancestral threats – a rival for our social position as more or less 
respected specialists. But robots are here, around us. So, why should we fear 
a machine classifying a prehistoric tool and deciding “intelligently” its origin, 
function and/or chronology? 

The debate is between what is considered an arti�cial way of reasoning 
(computer programs) and a natural way of reasoning (verbal narrative). Critics 
of computationalism insist that we should not confound scienti�c statements 
with predicate logic operations, since discursive practices or argumentations 
observed in a scienti�c text are not “formal”. By that reason, they are tributary, 
to a certain extent, from the Natural Language and the narrative structure 
(literary) of which scienti�c texts derive. Personally, I take the opposite ap-
proach: scienti�c problem solving stems from the acquisition of knowledge 
from a speci�c environment, the manipulation of such knowledge, and the 
intervention in the real world with the manipulated knowledge. The more 
exhaustive and better structured the knowledge base, the more it emulates 
a Scienti�c Theory and therefore the easier the solution is to the scienti�c 
problem, the more adequate the interpretations we will get.

As its history proves, computational intelligence is not just about robots. 
It is also about understanding the nature of intelligent thought and action using 
computers as experimental devices. In the following pages I will consider whether 
this is also a possible “metaphor” to understand the way archaeologists think.

2. Machines who think

The dream of an “intelligent” machine is very old in the history of 
Philosophy, and it is related to the progressive discovery that nature and hu-
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man acts are not divine secrets, but could be broken down and understood 
systematically. Since Socrates, philosophers have often anthropomorphized 
a problem by imagining a demon accomplishing a task that was dif�cult to 
understand but seemed to be possible. In some cases, such a demon had a kind 
of mechanical nature. Maybe the most relevant “precedent” of computational 
intelligence was the logic imagined by Ramon Lull, a medieval mystic (13th. 
century), and one of Catalonia’s greatest poets. More than three centuries 
after the Ars Magna this book in�uenced Thomas Hobbes (1588-1679), who 
stated «by ratiocination, I mean computation. Now to compute is either to 
collect the sum of many things that are added, or to know what remains 
when one thing is taken out of another. Ratiocination, therefore, is the same 
with addition and subtraction». Hobbes wanted to account for all cognitive 
activities of the mind in terms of computation, and computation is calculated 
in terms of manipulation (transformation) of computable entities.

Gottfried Wilhelm von Leibniz (1765) envisioned a universal calculus 
of reasoning by which arguments could be decided mechanically. «Everything 
proceeds mathematically...if someone could have a suf�cient insight into the 
inner parts of things, and in addition had remembrance and intelligence enough 
to consider all the circumstances and take them into account, he would be a 
prophet and see the future in the present as in a mirror». He seemed to see 
the possibility of mechanical reasoning devices using rules of logic to settle 
disputes. 

Many of the natural philosophers of the Enlightenment took similar 
views. Julien Offray de La Mettrie (1709-1751) was perhaps the �rst to 
suggest that “man is a machine”, more as a metaphor than as a mechanical 
possibility. We had to wait until 20th century for a new turn of the screw. In 
1914, Bertrand Russell imagined recording instruments that could perceive the 
world in place of a human observer. Russell’s virtual observer eliminates the 
subjectivity of perception of what things really are. «There is no theoretical 
limit to what can be done to make mechanical records analogous to what a 
person would perceive if he were similarly situated» (Russell 1959). 

With early twentieth century inventions in electronics and the post–
World War II rise of modern computers, possibilities gave over to demonstra-
tions. As a result of their awesome calculating power, computers in the 1940s 
were frequently referred to as “giant brains”. As a consequence, in the middle 
of the 20th century, a handful of scientists began to explore a new approach 
to thinking machines based on their discoveries in neurology, a new math-
ematical theory of information, the engineering approach to control and 
stability mechanisms, and the availability of machines based on the abstract 
essence of mathematical reasoning.

The �rst computer systems displaying cognitive capacities considered 
“intelligent” (language understanding, learning, reasoning, problem solving) 
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were presented in 1956, at the Dartmouth Conference. At the same time, John 
McCarthy coined the term Arti�cial Intelligence. McCarthy’s main assump-
tions were that if a machine can do a job, then an automatic calculator can be 
programmed to simulate the machine. Knowledge was viewed as something 
that could be stored, coded, matched, and displayed. An arti�cial brain could 
be built simply by telling it what it needs to know. It was hoped that if we 
could represent the knowledge necessary to describe the world and the pos-
sible actions in a suitable formalism, then by coupling this world description 
with a powerful inference machine one could construct an arti�cial agent 
capable of planning and problem solving. 

The turning point came with the development of knowledge-based 
systems in the 1960s and early 1970s. It has been explained as a “paradigm 
shift” in computational intelligence toward knowledge-based systems. The 
thousands of knowledge-based mechanisms or “expert systems” following it 
became visible demonstrations of the power of small amounts of knowledge 
to enable intelligent decision-making programs in numerous areas of impor-
tance. Although limited in scope, in part because of the effort to accumulate 
the requisite knowledge, their success in providing expert-level assistance 
reinforces the old adage that knowledge is power. But it was this advantage 
which at the end acted as their main handicap. Arti�cial Intelligence began to 
lose its holistic character towards a general theory of intelligence, acquiring a 
more “application” orientation. Knowledge-based systems were useful tools, 
although they do not simulate how humans think.

About the same time, computer specialists began to realize that scienti�c 
reasoning can be described in terms of problem solving search (Langley et 
al. 1987; Thagard 1988; Wagman 2000). According to that view, scienti�c 
theories may be considered as complex data structures in a computational 
system; they consist of highly organized packages of rules, concepts, and 
problem solutions. The idea is that scienti�c knowledge directs problem solv-
ing search through a space of theoretical concepts. This speci�c knowledge 
matches against different possible regularities in the data and take different 
actions depending on the kind of regularity the system has perceived among 
external data. Some of this knowledge proposes laws or hypotheses, others 
de�ne a new theoretical term, and yet others alter the proposed scope of a law. 
Different data led to the application of alternative sequences of knowledge 
operators, and thus to different conclusions.

Generating a scienti�c explanation would be then a type of problem 
solving search, in which the initial state consists of some knowledge about a 
domain, and the goal state is a hypothesis that can account for some or all 
of that knowledge in a more concise form. A space of instances and a space 
of hypotheses should then be used, with the search in one space guided by 
information available in the other. That is to say, the use of instances constrains 



J.A. Barceló

98

the search for hypothetical statements of the causal relationship. Hypotheses 
are evaluated through known instances of the causal relationship. In looking 
for appropriate instances of examples, scientists are faced with a problem 
solving task paralleling their search for hypotheses. They must be able to plan 
by making predictions about which observational (or experimental) results 
could support or reject various hypotheses. 

If a computer program could be developed to do what we usually call 
“science”, then an intelligent robot able to substitute us in the tedious task of 
studying ourselves should also be possible. In 1965, Herbert Simon predicted 
that machines would be capable of doing any work a man could do by 1985. 
When that date arrived, and the promised intelligent machines were still not 
available, a critical approach to the very idea of thinking machines began. This 
failure precipitated the separation and rivalry of the two founding disciplines: 
Cybernetics and Arti�cial Intelligence. Cybernetics fundamental ambition was 
to produce a physically touchable theory of that most unphysical entity: the 
mind itself. The cybernetics researchers began their investigation of nervous 
systems by creating automata creatures reproducing what we (animals) can 
do. The arti�cial intelligence community ignored this approach in their early 
work and instead set the sights directly on the “intellectual” side of human 
thought, in experiments running on large stationary computers dedicated to 
the mechanizing of pure reasoning.

3. Archaeological reasoning as computation

The �rst requisite for an automated archaeology should be based on 
the dream of Hobbes, “rationalization as computation”. Formal logics, math-
ematics and computers have been used in archaeology, but the vast majority 
of their archaeological applications pertain to the domain of methodology or, 
even worse, to the design of data collections. In many cases, such efforts were 
not directed to the examination of the structures of archaeological reasoning 
and argumentation. 

Although computers and statistics began to be used in archaeology in the 
1950s, we had to wait until the end of the 1960s, when “new archaeologists” 
began to explore Hobbes argument. In so doing they emphasized the need to 
make disciplinary assumptions formal and explicit. Such authors considered 
that computer methodology provided an expanding armory of analog and 
digital techniques for computation, experimentation, simulation, visual dis-
play and graphic analysis. In that sense, it ful�lled a second requirement for 
automated archaeology: Russell’s challenge for eliminating the subjectivity 
of perception and explanation in terms of some kind of externalized demon. 
Mathematical techniques, as sense-extending machine tools could either be 
used like the microscope to examine the �ne structure of low-level entities and 
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processes in minute detail, or like the telescope to scrutinize massive ensembles 
over vast scales. They also seemed to provide powerful hammer-and-anvil 
procedures to beat out archaeological theory from intransigent data; thus, on 
one hand these methods can be used to construct models and simulate their 
consequences over a range of states, identifying test-conditions; on the other 
hand, the computer may be used to analyze and test real data and measure 
their expectations under the model against the reality.

Doran and Hodson (1975, 74, see also Doran 1970) already suggested 
that the question “Can a computer do this?” is almost always rephrased as 
“Can this procedure exactly be speci�ed?”. In his book, Analytical Archae-
ology (Clarke 1968, 512-513) David Clarke noted three ways to explore 
rationalization as computation in archaeology:
1. using descriptive statistics for concept de�nition and quanti�cation; 
2. using analytical inductive statistics to handle relationship concepts;
3. using isomorphic systems of symbols arranged in axiomatic schemes, models 
or calculi to handle the regularities in complex data.

The main problem in those years was that many scholars regarded 
mathematics and statistics as an analytical tool to be “used”, and not as a way 
to transform rationalization into computation. Only some limited aspects of 
archaeological reasoning were computationally formalized, like classi�cation 
and seriation. Some emphasis was placed on statistical hypothesis testing, but 
there was very poor application of mathematical formalism to the theoreti-
cal issues of archaeology, despite recognition of the value of axiomatically 
or formally expressed theory (Read 1990). The naive use of Hempelian hy-
pothetico-deductive reasoning mechanism as a “method” to test hypotheses 
is a good example. Statistics was placed at some part of the reasoning cycle, 
leaving the rest of the explanatory process in traditional narrative terms. A 
cautious note by Doran and Hodson (1975), the founding fathers of quan-
titative archaeology, is very interesting in this regard. They found the claims 
for a “formalized” approach to archaeology greatly exaggerated and therefore 
dangerous. While they share some of the dissatisfaction with subjectivities in 
archaeological explanation at that time, the proposed solution – the hypotheti-
cal-deductive method – was considered as a bizarre mixture of naivety and 
dogmatism. Formalization was still regarded as an “alien” conception.

A similar theme was iterated by Cowgill (1986, 369) in a review article 
titled Archaeological Applications of Mathematical and Formal Methods. 
There he referred to three broad categories comprised of «archaeological 
observations, analytical methods, and sociocultural theory», but then ob-
served that although some anthropological reasoning was expressed directly 
in computational (mathematical) terms, most of it was still expressed in a 
subjective narrative way.
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The �rst synthetic models of archaeological inference were proposed 
by D. Clarke (1972), M.B. Schiffer (1976), M. Borillo (1977), among 
others. They argued for the formalization of the acquisition of archaeologi-
cal knowledge in terms of sets of laws, correlates and cultural and natural 
transformation processes. The cybernetic theory of the 50s and 60s provided 
the language necessary for that formalization. Instead of considering “archae-
ology” as a machine, “new archaeologists” regarded human society, and even 
the human individual (but not the archaeologist!) as a machine, forming a 
complex whole or “system”. Here, “machines”, “automata”, and “societies” 
were synonymous. Archaeologists were convinced that they should study the 
relationships between “components” to discover how the system worked in 
the past. The links between elements or subsystems were examined in terms 
of correlational structure (Clarke 1968).

Only in the mid-1980s, a step forward towards a full formalization was 
made, when archaeologists realized the need to impose a concordance between 
the language of the model, the assumptions of the model and its interpret-
ability (Carr 1985; Read 1985). The problem arising with axiomatization 
was not whether archaeologists have developed a theory that can be recast in 
axiomatic fashion but whether there are principles or relationships suitable 
for restatement as axioms for an axiomatic construction. The real fact is that 
archaeologists do not know exactly what archaeology is.

4. Simulating archaeologists

Jean-Claude Gardin became a professional archaeologist by chance at 
the end of the 1950s, and consequently he always had an outsider’s view of 
what archaeologists do. Instead of a normativist approach to archaeology, 
suggesting the best way of constructing the archaeology we need, he took an 
analytic point of view, looking for ways of deconstructing what archaeologists 
believe they do. His purpose was to expose the logical �aws in argumentation 
and so to improve the logical execution of reasoning. This would allow the 
study of archaeological logic itself.

According to Gardin, the concrete expression of reasoning in any 
dominion of science is the text where the author has expressed the mental 
operations that have led him/her from the observation of certain empirical 
facts, to the af�rmation of certain explanatory proposals. This methodology 
looks for the necessary bridges between facts and theses and the links between 
explanations. It has been called logicist analysis (Gardin et al. 1981). Its goal 
is to reduce the content of the text in its main components, studying their 
fundamental connections. The schematization of an archaeological paper is 
not an abstract or a summary of the paper, but a reformulation of its content 
in a condensed form. Gardin uses the word “condensation” as in physics: a 
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rearrangement of something into a more compact volume, without loss of 
substance. He and his colleagues “have deconstructed” numerous scienti�c 
works (mainly archaeological) in this way. This approach is precisely a frame-
work for analyzing and modeling the questions and answers that bracket a 
scienti�c text, and there is an obvious intuitive link between meaning, ques-
tions, and answers. 

Gardin assumed that our theoretical constructs can be expressed in terms 
of a “calculus”. Archaeological theories can be formulated as computational 
structures with two components. The �rst one is a facts base, here under-
stood as a set of declarative propositions that include not only descriptions 
of archaeological materials and their context, with associated archaeometric 
data, but also a large number of referential statements. Those statements are 
not usually regarded as “data”; they include primarily vast sets of analogies, 
“common sense”, shared belief, ideologies, etc. The second component is an 
inferential tree made up of rewrite operations, which reproduce the chain of 
inferences from the archaeological record (“facts”, represented as Po) to dif-
ferent explanatory statements (Pn). Between the extremes of the argumenta-
tion, there are intermediate theses (Pi). Scienti�c reasoning builds chains of 
oriented propositions Po, P1, P2…, Pn in terms of successive operations Pi --> 
Pi + 1. (Gardin 1980, 1991, 1993, 1994, 1998, 2003). 

 “Rules” are the key; not laws, which are inviolate, but rules that can 
be changed and indeed are always changing in a re�exive relationship allow-
ing the expert (human or machine) to accommodate new information. Given 
some empirical data (observations) about a particular archaeological case, 
and some bit of associative knowledge (If…Then) (hypotheses and interpreta-
tions considered valid in a Social, Anthropological or Historical Theory), the 
archaeological problem can be explained in terms of the knowledge stored 
in a series of rules. In other words, given some visual input and a candidate 
explanatory causal model, a correspondence can be established between 
them. This means that a small number of features are identi�ed as matching 
features in the input and the model. Based on the corresponding features, a 
decision rule linking visual features with their causal process (social activity) 
is uniquely determined. The recovered decision rule is then applied to the 
model. Based on the degree of match, the candidate causal event is selected 
or rejected. To be accepted, the match must be suf�ciently close, and better 
than that of competing solutions.

The rules discovered by logicist analysis may be subjective, but they are 
explicit. Anyone can produce the same results, so that although the system 
is subjective, it will be consistent when different subjectivities (i.e. different 
individuals) use it. The acceptance of the assumptions on which the problem 
solution is based leads to consistency, and direct comparability between results 
produced by different people; this ful�lls the basic requirements of objective 
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data within the consensus reality of mutual users of the program. Therefore, 
logicist analysis can extract objective-like knowledge, but the complexity of 
the dynamic process is retained and the data is produced in the form of prob-
abilities that can be compared as if they are objective data within a de�ned 
consensus reality.

Analogies between logicist analysis and some aspects of arti�cial intel-
ligence are patent, although both representation schemas evolved in parallel 
without further implications (Gardin 1980, 123-125, 1991; Gardin et al. 
1987). Formal characteristics of Expert Systems technology appear to be 
very similar to the general structure of logicist analysis rewrite rules. The 
“deconstruction” of a scienti�c text in terms of rewriting operations agrees 
with the “extraction” of the expert knowledge in terms of production rules. 
In the same way that the knowledge engineer tries to �nd out how a human 
expert thinks before introducing “prior knowledge” into the computer pro-
gram, the logicist analyst tries to study what is hidden inside a scienti�c text 
written in natural language. 

Gardin accepted that the way archaeologists make decisions can be 
mechanized. Although he never tried to build an automated archaeologist, 
his suggestions moved some archaeologists to create what at �rst look seem 
to be “automated archaeologists”. The most obvious application of this “au-
tomatization” of archaeological reasoning is the domain of archaeological 
typologies. In the same way, the function and chronology of ancient buildings 
can be correctly explained from their observed architectural features, and the 
visual characteristics of human and animal bones can be used to recognize 
them as instances of well de�ned explanatory categories. It is also possible to 
mechanize the process of microscope samples classi�cation for ancient wood 
taxonomy determination. Some other systems help scientist to decode decora-
tive patterns in pottery or rock-art. Other archaeological applications have 
explored the possibilities of whole artifact identi�cation from the perception 
of sherds. Applications of automated problem solving methods do not �nish 
here. An expert system can be programmed to help archaeologists to interpret 
the results of archaeometric analyses, within the framework of provenance 
studies. Such a system would produce one (or several) “diagnoses” according 
to the geographic origin of raw material, from a database of analyzed samples 
of known origin provided by the user (see a review of such applications in 
Barceló 2008).

5. What computers could not do years ago  
and what they can do now

Herbert Simon’s prediction that machines would be capable of doing any 
work a human can do by 1985 was soon considered over-optimistic by some 
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authors, exaggerated for others, or even wrong for many computer scientists 
and philosophers. Some years before that landmark date, it became clear that 
intelligent machines could not be produced. In fact, even today, 25 years after 
the deadline, we still have not arrived at a true computational intelligence. In 
the same way, and around the same years Gibbon (1984, 383), though espous-
ing the value of formal and axiomatically expressed theory in archaeological 
reasoning, bluntly commented that «no theory within archaeology has ever 
been formalized». The impossibilities of machine intelligence and automated 
archaeology seem to have been detected simultaneously: there is no easy way 
to translate rationalization into computation.

In any case, we have to accept that the very idea of “rationalization as 
computation” never found the place in archaeology (nor in any other social 
science) it merited. The most promising computational techniques in those 
early days were accused of excessive simpli�cation, of forcing knowledge, or 
distorting it, and of failing to exploit fully the knowledge of the expert (Hug-
get, Baker 1986; Wilcock 1986; Doran 1988; Gallay 1989; Lagrange 
1989; Shennan, Stutt 1989; Francfort 1990; Puyol-Gruart 1999). 

However, there is nothing suspicious in the approach. The success of 
expert systems in parallel disciplines is very evident if we consider the thou-
sands of references, and it is due to their working within a world in which 
the range of meaning for terms is circumscribed within a carefully selected 
micro-world. Yes, they may not be a model of human reasoning, as considered 
by Gardin, but this technology really works! The problem is that archaeology 
has not yet arrived at a relevant degree of formalization, given absurd preju-
dices and the weight of individual authority. Robots are not the guilty ones, 
but the humans that have not learned how to program them!

In archaeology, the so called “radical critique” of the 1980s distorted 
the debate when it regarded archaeology as literature. There are still schol-
ars considering that any archaeological analysis is a mere text product of 
an individual writer. Consequently the explanation of past behavior has the 
same value as a literary product. Even the practice of archaeology can itself 
be reduced to “theatre”. Given that robots can not act, there are no auto-
mated archaeologists! Given that rationalization is seen as art (literature), it 
is believed that it cannot be rendered computable, because the act of literary 
creation is intrinsically incomputable.

The question never arrived at this extreme in the Arti�cial Intelligence 
debate. Although by 1985, computer scientist and cognitive psychologists 
were well aware that no general theory of rationalization could be rendered 
computable, and no “arti�cial human brain” has ever been programmed, they 
had already proved that intelligence could be mechanized in very restricted 
domains. Within the last two decades, the view of computational intelligence 
based on pre-set plans and searching in restricted knowledge-bases using 
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well-de�ned operators for activating already existing sequences of explana-
tions (i.e. expert systems) has come under scrutiny from both philosophers 
and computer scientists. 

The main consequence of this profound criticism was the revival of the 
cybernetic approach in the late 1980s, and its integration with new paradigms 
of cognitive science, philosophy and a so called “new” arti�cial intelligent para-
digm. A shift in perspective from knowledge as stored artifact to knowledge as 
constructed capability-in-action inspired a new generation of cyberneticists in 
the �elds of situated robotics (Brooks 1999; Franklin 1995; Clancey 1997; 
Pfeiffer, Scheier 1999; Iyida et al. 2004). To be intelligent, an intelligent 
machine should focus on the outside world, how this world constrains and 
guides its explanatory behavior. The automated system we would like to build 
is the agent-in-the-right-context, an agent constructing descriptions by adapt-
ing old ways of perceiving, by putting models out into the world as artifacts 
to manipulate and rearrange, and by perceiving generated descriptions over 
time, relating them to past experiences or future consequences.

Machine Learning appears then as the key word in the New Cybernet-
ics. That is to say, we do not simply ask: “What knowledge structures should 
be placed on the head of a robot able to do archaeology?”. Instead of storing 
declarative sentences in the computer’s memory, we should build a machine 
able to learn from its own explanations and mistakes. If we want to go be-
yond the traditional expert-system approach, we should make emphasis not 
on database consultation, analogy, and simple statistical decision-making, 
but on learning and categorizing, and on how meaning can be generalized 
from known examples of a given concept. Fortunately, learning is not an 
impossible task for computers. New generation adaptive algorithms (neural 
networks, support vector machines, genetic algorithms) appear to be formally 
true universal inductive algorithms, and they can be used to solve many ar-
chaeological problems (Barceló 2008).

Programming computers to be able to solve most learning problems 
is a cross between statistics and computer science. The idea is to program a 
system able to look for common features between positive examples of an 
observed or simulated causal relationship to be predicted, and common dif-
ferences between its negative examples. In contrast with discrete Aristotelian 
logics, machine learning models provide more graded answers to archaeo-
logical problems. Such programs integrate information from a large number 
of different input sources, producing a continuous, real valued number that 
represents something like the relative strength of these inputs. These graded 
signals can convey something like the probability of the answer or explana-
tion in some speci�cally constrained circumstances. 

Computer scientists are intensively exploring this subject and there are 
many new mechanisms and technologies for knowledge expansion through it-
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erative and recursive revision. Arti�cial Intelligence offers us powerful methods 
and techniques to bring about this new task. Fuzzy logic, rough sets, genetic 
algorithms, neural networks, Bayesian models and agent-based systems are 
among the directions we have to explore. These paradigms differ from usual 
methods in that they are (in comparison at least) robust in the presence of 
noise, �exible as to the statistical types that can be combined, able to work 
with feature (attribute) spaces of very high dimensionality, they can be based 
on non-linear and non monotonic assumptions, they require less training 
data, and make fewer prior assumptions about data distributions and model 
parameters. The huge number of learning algorithms and data mining tools 
make it impossible to review the entire �eld in a single paper (Jones 2007; 
Luger 2008; Munakata 2008; Hassanien et al. 2009; Bar-Cohen et al. 
2009).

No aspect of this discussion has entered into the archaeological debates 
of our time. Critics of the “rationalization as computation” view of archaeo-
logical discipline are ignorant of this revival of the cybernetic paradigm, and 
its integration with new paradigms of cognitive science, philosophy and new 
programming approaches. What at the beginning seemed correct criticisms 
of the view of human society as a simple machine, soon became an hysterical 
rejection of formalization and any possible surrogates: computers, statistics 
and formal logics. The idea of “art” or “humanities” has been violently vindi-
cated favoring explanation via “common sense”, ignoring the fact that arti�cial 
intelligence is technologically achievable provided we change the classical 
approach of its early days: if we want to reproduce human intelligence in a 
machine, we should make emphasis on three central aspects: development, 
interaction, and integration. Development forms the framework by which 
machines should imitate the way humans successfully acquire increasingly 
more complex skills and competencies. Interaction should allow robots to use 
the world itself as a tool for organizing and manipulating knowledge, it allows 
them to exploit humans for assistance, teaching, and knowledge. Integration 
should permit an automated archaeologist to maximize the ef�cacy and ac-
curacy of complementary mechanisms for perceiving and acting. 

Therefore, what would give a more “intelligent” character to automata 
applications in the archaeological domain will not be a passive storing of 
individual rules, but an enhanced ability to learn and to react in a certain 
way to a certain stimulus. If we want to go beyond the usual archaeological 
explanations based on template matching, we should place emphasis not on 
database consultation, analogy, and decision-making, but on learning and 
categorizing, and on how meaning can be generalized from known examples 
of a given concept. That is, the automated archaeologist should develop its 
own cognitive machinery (what it knows) as opposed to construct a data 
structure on which a preexisting machinery operates.
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6. Conclusions 

The failure of the early prospect of Arti�cial Intelligence was attributed 
to a view of intelligence as an abstract machine. In the same way, the failure 
of the New Archaeology of the 60s was its insistence on simple universal 
theories of human behavior. The reaction should be based on a move towards 
a view of knowledge as something created from transformations of previous 
knowledge. Information does not exist in the world waiting to be extracted 
by a robot, but, rather, it should be situated in meaningful contexts. Perceiv-
ing a world implies distinguishing “possibilities for action” and not naming 
or identifying per se. Explanation cannot be properly understood, if consid-
ered independently of the context in which it occurs. The historical, cultural, 
and social context of the interactions of an intelligent machine is crucial to 
the understanding of the ongoing process. That is to say, the archaeological 
record is here de�ned in terms of the recognition of the circumstances to act 
with or upon (explanation). Being a perceiver, an intelligent machine should 
literally create a phenomenal world, because the process of perception �rst 
de�nes relevant distinctions in the sensory environment.

The approach exposed here challenges the received picture of an ar-
chaeological explanation as an invariant structure. Solving archaeological 
problems is an activity. We have to change the way we understand explanatory 
concepts. They are not verbal labels we attach to some percepts by means of 
a previously existing rule but a cognitive action, or a requisite for the next 
action. Explanations should be based on purposeful, goal-directed mechanisms 
emerging from a dynamical system that has been calibrated by learning (trial 
and error, experimentation, analogy) to make the right choices in the proper 
circumstances. 

What I am suggesting is that when explaining, our automated archae-
ologist conceptually navigates in a potential �eld of explanations looking 
for attractors (goals) and repulsions (constraints). Upon detecting the goal, 
the explanation moves toward it, executes it and then follows until another 
goal or constraint is found. It repeats this sequence of actions until it has re-
turned all attractors in the potential �eld. Since the robot does not manipulate 
propositions, any account of automated explanation that would draw on con-
nectionist principles would not be able to limit itself to principles of logical 
inference in describing how some belief was arrived at. On the contrary, it is 
necessary to rely on something like the notion of maximal satisfaction of soft 
constraints to describe how the machine behaves cognitively, and in evaluat-
ing its performance we would presumably consider whether the constraints 
it satis�ed in arriving at its output state were the appropriate constraints. 
This would lead us to an evaluation of how an automated archaeologist has 
learnt, speci�cally, whether its training had resulted in ways that enabled it 



The birth and historical development of computational intelligence applications

107

to respond to inputs in a manner that was most likely to meet its needs in the 
environment. This would constitute a major change, since epistemology has 
generally been pursued through conceptual analysis, not empirical inquiry.

Juan A. Barceló
Departament de Prehistòria

Universitat Autònoma de Barcelona
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ABSTRACT

Twenty years after the consolidation of a true professional archaeology in search of 
a “scienti�c” dream, mathematics and computers made their appearance in the discipline. In 
the same way, the �rst essays dealing with “automatic archaeology” appeared in the 1950s, 
looking for standardization of archaeological description and statistical reasoning, but we 
had to wait for another 30 years until the appropriate technology was available. At the end of 
the 70s and beginning of the 80s, Expert Systems were considered as a true promise towards 
the independence of archaeological reasoning from subjectivity. Nevertheless, the rise of post-
modernism and the radical critique, with its emphasis on subjectivity and situational context 
of the research effort generated considerable turmoil that, in appearance, buried the dream 
of an automatic archaeology. Research efforts in these domains of computational intelligence 
continued, however, especially in the domains of remote sensing and archaeometry. Modern 
technological developments like 3D scanning are responsible for a revival of interest in com-
putational intelligence methods. Today, we are still far from the early dream of an automatic 
archaeology, but it is no longer a “nightmare”. It is a technological reality that will contribute 
to a more professional and scienti�c-based archaeology.




