
STATISTICAL ANALYSIS OF CERAMIC ASSEMBLAGES 

1. INTRODUCTION 

This paper describes the results of the first year of a two-year project 
'Statistica! analysis of ceramic assemblages' at University College London lnsti
tute of Archaeology. lt is funded by a grant from the Science-based Archaeolo
gy Committee of the Science and Engineering Research Council (SERC
SBAC), with C. R. Orton as principal investigator and Dr. P. A. Tyers as 
research assistant. In the first year we have concentrated on the theory of the 
subject and on collecting suitable data; in the second year we intend to analyse 
as many datasets as possible, to gain experience in the application of the theory 
to a wide range of materiai. 

1.1 Quantification o/ ceramics 

By the quantification of a cerarnic assemblage we mean the giving to it of 
a value which expresses the 'amount' of materia} in it. Such a value we here 
calla measure (of quantity) . We suppose that, fora given investigation, the as
semblage can be divided into subsets, here called types, by an exclusive and ex
haustive classification, i.e. every picee of ceramic materiai belongs to one, and 
only one, type. This is not a restrictive requirement as it is permissible to have 
an 'unclassified' or 'unknown' type. Different aims may require different defin
itions of type, e.g. shape types (forms), fabric types, decorative types, or some 
combination of two or more of these {see Section 4.3). Quantification consists 
of assigning a measure to each type in the assemblage, i.e. saying 'how much' 
of each type there is. 

Why should archaeologists want to do this? There seem to be three main 
reasons - for chronological, spatial or functional/social reasons. 

CHRONOLOGICAL REASONS 

Seriation is a long-established archaeological technique (see MARQUARDT 
1978 for a history) for sorting groups of archaeological materiai (e.g. grave
groups, ceramic assemblages) into a linear order, which is assumed {or some
times shown) to correspond to chronology. Sometimes the presence or absence 
of types in groups is used (e.g. DUNCAN et al. 1988), but for ceramic assem
blages the proportions of different types in diff erent assemblages form the usual 
starting point. For example, Millett {1979a) used the proportions of different 
forms in various assemblages to seriate the pottery from a small Roman town. 
The use of pottery in urban seriation has been dis~ussed by Carver (1985) . 
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SPATIAL REASONS 

Variations in the proportions of a particular type of ceramic at different 
sites around its production centre can give valuable information about possible 
means of marketing and transport. In the classic study of this type, Fulford and 
Hodder (1974) showed differential variation in the fall-off rate (the rate at 
which the proportion of a type decreases with increasing distance from the 
production centre) of Oxfordshire ware according to whether the direction was 
along a river or overland. This suggested that the main means of transport was 
by water. The compcting influence of thc New Forest centre was also highlight
ed by a study of the residuals from a regression analysis. 

FUNCTIONAL/SOCIAL REASONS 

Functional differences in the composition of assemblages have been used to 
infer differences in activities or socia! status, both within and between sites. 
Por examplc, Millett (1979b) looked for evidence for different activitics in 
different pit groups at the late Roman site of Portchester, and Redman (1979) 
used ceramic assemblages as evidence for different sodai areas in the medieval 
town of Qsar es-Seghir, Morocco. 

OTHER REASONS 

Quantification can also give an insight into site formation processes (see 
Section 1. 4). 

In all cases the need is for a measurc of quantity of ceramics, which can be 
broken down by different groupings, e.g. by chronological, geographical or 
functional types. The main use for such figures is to compare them with other 
assemblages; figures relating to one assemblage in isolation are rarely of use. 

1.2 Measures of quantity 

Severa! ways of mcasuring quantities of pottery have been used and suggest
ed over the years. Two broad approaches can be discerned, one asking the ques
tion 'how many vessels?' and the other the question 'how much pottery?' . 
Within the latter are two sub-approaches, depending on whether all vessels 
should in some way be considered equivalent, irrespcctive of size, or whether 
(for example) larger or more valuable vessels should be given more weight. 
Problems ha ve also arisen because some measures can be calculated directly, 
while others are in the nature of 'unknown' parameters, and have to be estimat
ed. Discussion of the 'best' estimator for a particular parameter can obscure the 
issue of whether it is the 'best' parameter for the purposc in hand. 

HOW MANY VESSELS? 

The first approach sees the aim of quantification as saying how many vessels 
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are present on a site or in an assemblage, i.e. from how many vessels do the 
sherds that we have come? This is here called the vessels represented approach. 
Some writers (e.g. MOORHOUSE 1986, 86) seem to believe that this question 
can be answered directly, by bringing together all the sherds that belong to the 
same vessel. Others (e.g. VINCE 1977, 63) seem to be less sanguine, and to see 
this parameter as something to be estimated. The answer probably depends on 
the nature of the site or deposit, the technology of the pottery (e.g. hand-made 
or wheel-thrown), and the skill and time available to the archaeologist. It seems 
likely that the cases in which a direct count of vessels can be made are in the 
minority, and are therefore unlikely to be useful in intra- or inter-site compar
isons. 

We therefore have to look at ways of estimating the number of vessels 
represented in an assemblage. One estimate in the minimum number o/ vessels 
(VINCE, ibid), which is analogous to the MNI statistic of animai bone studies 
(GRAYSON 1984, 27-48) . Vessels are reconstructed as far as possible; sherds 
which do not physically join the reconstructions but which could feasibly belong 
to the same vessel are assigned to them. Groups of sherds belonging to the same 
vessel are referred to as sherd /amilies. This gives a figure equal to, or less than, 
the actual number of vessels represented. An alternative approach, maximum 
number o/ individuals, assigns unmatched sherds to separate vessels, giving rise 
to an estimate greater than or equa! to the number of vessels represented. Be
cause the first approach tends to under-estimate the true number, and the se
cond to over-estimate it, hybrid estimates, e.g. the average of the two, have 
been suggested. For reasons of speed or practicability, it has at times been sug
gested that estimates should be based on rims, bases or other distinguishing fea
tures, rather than on whole vessels. We here use the term estimated vessels 
represented (evrep) to mean any estimate of the number of vessels represented 
in an assemblage. 

AMOUNTS OF POTTERY 

If we decide to count ali vessels as equivalent in some way, then we need 
a measure under which a whole vessel will counts as '1' and fragments will be 
represented as fractions, according to the amount of each vessel present. For 
example, a vessel of which half is present would have a measure of 0.5. Such 
a measure is called a vessel-equivalent (v.e.). Ideally, an assemblage would be 
sorted into its vessels represented, and the v.e. of each measured. Even when 
it is possible to sort to vessels represented, it is not clear how the v.e. should 
be measured. Schiffer (1987, 283) suggests using the ratio of the weight of the 
reconstructed fragment to that of a comparable complete vessel. This would be 
a good measure provided the pottery is so standardised that one can tell what 
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the weight of a complete vessel would be, and if a high proportion of the sherds 
in an assemblage could be assigned to a known vessel type. 

In general, however, it is not possible to measure the v.e. directly, and it 
must be estimated in some way, giving rise to the estimated vessel equivalent or 
eve (see 0RTON 1975 for tbe term; the idea seems to be due to BLOICE 1971 
or EGLOFF 1973). Eves are most commonly calculated from tbe percentage of 
a complete rim represented by eacb rim sherd or family of rim sherds. In the 
simplest form, it is not necessary to identify rim-families. The eve statistic is 
likely to be more reproducible than evreps, as it does not rely on the identifica
tion of individuai pots. Otber distinctive features can be used if appropriate, 
e.g. bases, bandles, spouts, or some combination of two or more of tbem. 

Alternatively, one may wisb to give more value to larger vessels. The sim
plest way to do this is to record the weight of sherds of each type present. Thus 
heavy vessels count more than light ones, in both the complete and the frag
mentary state. Similar measures that bave been suggested include surface area 
(GLOVER 1972, 92-6; HULTHÉN 1974) and displacement volume (HINTON 
1977, 231). 

Confusion has sometimes arisen because the eve gives a measure which is 
always less than or equal to the evrep; in fact, it is less than or equa! to the mini
mum number of vessels. For this reason it has at times been called 'minimum 
number of vessels' and used as a 'floor' estimate of vessels represented. It is 
important to see it as an estimate of the measure of the amount of pottery, not 
as a rather bad estimate of the number of vessels represented. 

Finally, we bave wbat is probably the most widespread measure, the sherd 
count. lt is highly variable, depending on the degree of breakage of pottery in 
an assemblage. For example, in an assemblagc of complete vessels all would 
bave the same value {one), wbile in an assemblage of fragments, tbe most break
able vcssels would have the highest count and hence the greatest measure. 

1.3 Comparisons o/ dif/erent measures 

In this section we look at attempts that have been made to compare the 
measures described in section 1.2. We shall concentrate on four measures: 
(i) sherd count 
{ii) weight (and related measures sucb as surface area) 
(iii) estimated vessel-equivalcnt (eve) 
(iv) vessels represented (evrep). 

Thc choice of a suitable measure depends on the use to which it will be put. 
The criteria to be used in assessing and comparing measures are: 
(i) archaeological - what is the archaeological purpose? 
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(ii) formai - does the measure satisfy formai criteria, e.g. concerning bias, 
variance? 

(iii) practical - is a measure quick and easy to use, giving consistent results 
between different workers, and likely to be free from gross errors? 

Following reasoning of Section 1.1 we take the main purpose of quantifica
tion as the comparison of the proportions of different types (however defined) 
in different assemblages. 

The earliest attempts to compare measures concentrated on archaeological 
and practical criteria. Solheim {1960) compared sherd count and weight, con
cluding that both together gave more information than either separately (see 
Section 1.4). Hinton (1977) compared total sherd count, rim sherd count, 
weight and volume, concluding that total sherd count was probably the most 
accurate, but weight was the fastest, while rim sherd count seemed unreliable 
and the measurement of volume was messy. However, the lack of formai criter
ia in these assessments is a serious drawback, as the outcomes could only be 
compared with the writer's expectations. 

Formai criteria, in the form of correlation coefficients, were used by Glover 
{1972, 93-6) and Millett (1979c). Both concluded that apparently high correla
tion coefficients between different measures indicated that they were more-or
less equivalent, and that a decision could be based on practical criteria. Weight 
or surface area (measured by a quick but approximate technique, rather than 
by Hulthén's (1974) laborious adjustment of weight) seemed to be the favoured 
approach. Once again, the value of using more than one measure was noted. 

A formal assessment, based largely on the criterion of bias, was made by Or
ton (1975). Use of sampling theory showed that measure (iii) (eves) was un
biased, and that measures (i) and (ii) (sherd count and weight) could give un
biased comparison in favourable circumstances. Weight seemed preferable to 
sherd count because the circumstances were less restrictive. Measure (iv) 
(evreps) gave biased estimates of both the proportions in an assemblage and of 
comparisons between assemblages, and was not recommended. Further work 
(ORTON 1982a), based on simulation, suggested that evreps gave rise to smaller 
standard deviations than the other measures; there seemed to be little to choose 
between sherd count, weight and eves in this respect. 

1.4 Statistics based on two or more measures 

It has long been known that quantifying the same assemblage by two differ
ent measures can give information that is not apparent from either taken in isol
ation (e.g. SOLHEIM 1960). For example, dividing weight by sherd count gives 
the average weight of a sherd of a particular type, which can give indications 
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of the post-depositional history of an assemblage. Bradley and Fulford (1980) 
gave an example of the contribution of such statistics to the interpretation of 
a site. The genera! use of derived statistics has been discussed by Schiffer 
(1987, 282-5) in the broader context of the study of site formation processes. 

If we take the four measures compared in Section 1.3, there are twelve pos
sible pairings. Two of them have been found to be particularly useful: 
(i) sherd count + vessel-equivalent, called brokenness (ORTON 1985), 
(ii) vessel-equivalent + vessels represented, called comp/eteness (0RTON 1985) 

or the completeness index (CI) (SCHIFFER 1987, 282). 

BROKENNESS 

Brokenness is a function of both ceramic type and post-depositional history. 
Given the same history, large or fragile vessel types tend to have a greater value 
of brokenness. i.e. more sherds per eve, than small or robust vessel types. For 
example, in a study of groups of early Roman pottery (BEDWIN, 0RTON 1984) 
the mean value for coarse wares was over three times that of fine wares (110 
and 32 sherds/eve respectively), because the fine wares were present as much 
smaller vessels than the coarse wares. At the same time, the longer and more 
complicated the post-depositional history of an assemblage, the more broken 
the pottery is likely to be, and the greater the brokenness. In the same study, 
the brokenness in 'reliable' contexts (excluding very small assemblages) varied 
by a factor of more than two, from 59 to 140 sherds/eve. It may be difficult 
to disentangle the two effects when comparing assemblages. 

COMPLETENESS 

Completeness differs from brokenness in that it is in generai a function only 
of post-depositional history, and not of ceramic type (but see Section 2.5). In 
other words, all types in an assemblage should have the same value of complete
ness, within limits due to sampling theory {and excluding factors such as 
differential scavenging of particular sherds). Completeness starts from a value 
of one (whole pots) and decreases at every subsequent 'event'. At the site men
tioned above, lower fills of a ditch gave values of 0.09 to 0.12 eves/evrep, while 
upper fills gave values of only 0.04 to 0.06, suggesting recutting of the ditch 
(the composition of the pottery in the lower and upper fills was otherwise in
distinguishable). 

The value of derived statistics is thus one aspect that must be kept in mind 
in studying the properties and behaviour of various measures, and in devising 
procedures for their calculation or estimation. 
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1.5 Recording pottery 

Despite various recommendations (e.g. YoUNG 1980), there is no generally
accepted method of cataloguing pottery, and many are in use. We need to de
velop a theory that will be applicable to as many different systems as possible, 
while pointing out the advantages of some and the disadvantages of others (see 
section 4.2). 

Catalogues can be made as simple hand-written lists, card indices, entries 
on pre-printed cataloguing sheets, or records in a computer database. Whatever 
the system, we need to forge a link between it and statistica! theory by estab
lishing what entity, in the system, corresponds to the statistica! concept of the 
'observation' . 

What we need for this purpose is the smallest possible catalogued quantity 
for which the measure is known. For example, if the measure is weight, and 
sherds are weighed individually, then this unit is the sherd; if they are weighed 
in batches, then the unit is the batch. Similarly, if the measure is in rim-eves, 
and rim sherds are measured individually, then the unit is the rim sherd; if they 
are measured in rim-families, then the rim-family is the unit. 

Since we are interested in estimating proportions of different types in 
different assemblages, the catalogued unit should not mix pottery of different 
types or from different assemblages. In other words, the broadest possible 
cataloguing unit consists of all the pottery of one type in one assemblage. The 
smallest possible unit is the individuai sherd. A catalogue can be seen as broken 
down into a number of entries, or records, each of which contains (at least) the 
context (assemblage), type and measure of a group of pottery. The totality of 
pottery of one type in one assemblage may thus be represented by a single 
record, or several records, depending on the system used. 

1.6 The problem 

A major problem is that none of the measures described in Section 1.2 is, 
as it stands, suitable for statistica! analysis. 
(i) sherd counts appear superficially to be suitable for analysis as discrete data. 

This appearance is however deceptive, as the 'observations' (i.e. individuai 
sherds) are not independent. We can demonstrate this by a simple reductio 
ad absurdum: if we broke all sherds in half we would (if the use of statistica! 
theory is permitted) halve all our variances and correspondingly increase 
the precision of our estimates. Clearly this is nonsense and shows that the 
theory cannot be applied. 

(ii) sherd weight and eves are very similar in this respect: neither can generate 
estimates of variances internally. Such estimates must therefore be based 
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on repeated observations, i.e. we require severa! assemblages which we can 
assume with confidence to be samples from the same population. But this 
begs the very question we are trying to answer, and is therefore inappropri
ate. 

(iii) the 'vessels represented' statistic, like sherd count, could be treated as dis
crete data, but suffers from such serious biases (0RTON 1975} as to rule 
it out. 

2. THEORY 

2 .1 Aims and notation 

There are two main theoretical aims of the project: 
(i) to be able to set confidence limits on the proportions of a ceramic assem

blage that belong to different types, 
(ii} to be able to compare, both numerically and graphically, the compositions 

of two or more assemblages in terms of the proportion of each type present 
in each assemblage, and to assess the statistica] significance of the differ
ences between them. 
The practical aim of the project is to apply the theory to assemblages from 

a wide range of sites, of different types and periods, to assist in their interpreta
tion, and hence the interpretation of the sites themselves. We expect that the 
work will also lead to recommendations about the recording of ceramic assem
blages. 

In the theory, the term 'type' is used in a perfectly general sense, to mean 
a categorica! variable that takes a value on all the pottery from an assemblage 
(but it is accepted that one of the categories may of necessity be 'unknown'}. 
In practice, we use 'type' to mean either fabric, form, or the combination 
fabric-by-form. However, the theory does not depend on the particular mean
ing assigned to the term 'type', and users are free to assign their own roeaning 
to it. For example, decoration may be an important aspect of the definition of 
type in some circumstances. 

The data consist of the values of a chosen measure (see Section 1.2) on each 
record (see Section 1.5} of one or more assemblage. The implication of the the
ory far the choice of measure are set out in Section 4 .1. Unless otherwise stated, 
the theory that follows is perfectly generai. Sections which depend on charac
teristics of a measure, and which therefore will not be appropriate for all meas
ures, will be indicated. 

The number of assemblages making up a dataset is denoted by A, and the 
number of types by T. The numbers of records of the jth type in an assemblage 
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are denoted by mi (j = 1,. .. , T), and the total number of records by m. The 
measure of the ith record of the assemblage is denoted by wi> (i = 1, .. ., m). 
The total measure of a type is denoted by Wi (j = 1,. . ., T), and the overall 
total by W (note that upper case is used for type and assemblage totals, and low
er case for individua! values). The proportions of types in an assemblage are 
denoted by p = (pi> .. ., pT). 

The symbol - j refers to all types except the jth, and I;i means summation 
over the jth type. A 'bar' symbol is used to denote a mean (e.g. x). The unad
justed sum of squares Eiw;2 is denoted by S.2• 

The approach used is to treat each assemblagé as a sample from a different 
population of vessels. Our task then becomes 
(i) to make point and interval estimates of the proportions of different types 

in each population, and 
(ii) to test the significance of the differences between the estimates of propor

tions obtained from the different samples. This can also be seen as testing 
whether the assemblages could reasonably have come from the same popul
ation. 

(iii) to display the relationships between the different assemblages and the 
different types graphically. 

We note that for standard statistica! theory to be applicable, the 'observa
tions' (in our notation, records) must be independent of each other. This aspect 
is discussed in more detail in Section 4 .2. 

2.2 Estimates of proportions in a single assemblage 

The proportion pi is estimateci by 
pi = W/W, for j = 1, .. ., T. 
We define two new variables x(j) and y(j) for al! records by 
X;(j) = Wi 

Y;(j) = W; if the ith record relates to the jth type, 
= O otherwise. 

Then pi = W /W = Eyi(j)/Exm, a ratio estimate. 
Cochran (1963, 30-1) gives a formula for the variance of a ratio estimate, lead
ing to var(pi) = (m/(m - l)W4)[W -i2Si2 + Wi2S_i2) - (1) 
and cov(pi' Pk) = -(m/{m - l)W4)(WWjSk2 + wwksj2 - WjWkS2J - (2) 

SUMMARY 

This section enables us, /or the first time, to estimate the variances and con
variances of the proportions of different types in a single assemblage. We can 
therefore attach confidence intervals to the estimate of the proportion of a type 
or any combination of types. 
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2 .3 Comparing proportions in two or more assemblages 

Before we can tackle this problem, we need to develop some preliminary 
theory. 
Given any type j, we can compare var (pi) with the variance of an estimate 
based on a binomia! model, i.e. on an assemblage of complete vessels. In the 
~atter cas~, the formula is var' (f>;) = f>; q/n, for a population of size n, where 
qi = 1 - pi. 
So the variances would be the same if var(f>;) = f>; q/n. 
Wc can turn this round and define ni = f>i q/var(f>i), 
so that ni is the number of whole vessels that would give the same value of var 
(f>.) as our sample of m measurable records. 
The full formula is ni = (W/W)(W -/W)((m - 1)/m}(W _/S;2 + W{S-i2J 

= ((m - 1)/m)WiW -;W2/[W _.2S;2 + W;2S_/J - (3) 
It is important to note that ni is just a number w~ich, when applied to the 
binomia! formula for variance, give the same result as the formula (1) above. 
It is not, for example, an estimate of the number of vessels in the originai popul
ation. 
Suppose that ali types have the same mean and variance of w. 
Recali that var(f>;) = (m/(m - l)W4}(W_/S;2 + W;S-/) - (1) 
and that n; = f>; qi / var(f>; ) , 
and P; = WjW. 
We pool our estimates of the mean and sum of squares of w, 
obtaining w /m and S2 respectively' 
and replace W; by W(m/m), S;2 by S2(m/m). 
So n; = ((m-1}/m)(m/m)(m_/m)W4 I W2(m_/m)2 52 (m/m) + 
W2 (m/m)2 S2 (m_/m) l 
= ((m - 1)/m) W2/ { m_ /m) S2 + (m; I m)S2 } = ((m - 1)/m)W2/S2 = (4) 
So that if all the types have the same mean and variance of w, we can by pooling 
estimates obtain a common value n = n; for ali j. 

SEVERAL ASSEMBLAGES 

We at last have the background theory we need to look at the comparison 
of severa! assemblages, say A of them. 
We have vectors of measures [W.1> ... , w.TJ, 
of numbers of observations [m,p ... , m.T), 
of sums of squares (S2, 1, ••. , S2,TJ, 
and estimates of proportions (f>.1>· .. , f>,TJ. 
and variance-covariance matrices Il cov (p,i' f>,k) Il, 
all for 1 s r s A. 

We want to compare the vectors of estimated proportions, e.g. to test a 
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hypothesis H
0

: all assemblages are 'the same', i.e. can be thought of as sample 
from the same parent population. 

We assume that each assemblage is homogeneous (see Section 2.5) and so 
has a single n-value, which we cali nr, for 1 s r s A. 
We replace each W ri by W 'ri = n,(W r/W r) = (njW r) W •i 
for j = 1, ... , T and r = 1, ... , A. 
so that W 'r = n. for all assemblages r. 
The estimates of proportions are unchanged: 
A/ W' /W' w /\Y/ A P r! = r· r = rjl •• r = Pri' 
and so are their variances and covariances. 
Recalling (4), that n. = ((m - 1)/m)(W//S,2), 
and writing m.Jm, :::::: Prp etc., since the assemblages are homogeneous, 
we have var(f>.) ""' Pri qJnr 
and cov(prj> Prk) ""' - i\ Prk/nr. 
But these are exactly the same as the variance and covariances we would obtain 
from a multinomial distribution with parameter p and sample size n. 

CONCLUSI ON 

This is a very important result. It means that, as a large-sample approxima
tion, we can treat the transformed data as a series of samples from multinomial 
distributions. We can therefore treat the data collectively as a contingency table 
and use any of the theory appropriate to contingency tables (e.g. log-linear 
models, see Sections 2.4 and 3.2; correspondence analysis, see Section 3.1). For 
the first time, this approach enables to make proper statistica] comparisons be
tween the proportions of different types in different assemblages. 

We referto the transformed values W 'ri as pseudo-counts. They are not in
tegers, but can be treated for statistica! purposes as if they were. We shall de
velop the notation further when we look at specific measures is Section 4 .1. 

2.4 Log-linear and quasi-log-linear models 

Suppose we have a table of pseudo-counts (see Section 2.3) n, which may 
be two-way (e.g. context-by-fabric, context-by-form) or three-way (context-by
fabric-by-form). 

NOTATION 

To follow standard notation (e.g. FIENBERG, 1977) we replace n by x; the 
subscripts i, j, and k referto context, fabric and form respectively. We can con
struct a set of nested models of increasing complexity and archaeological reality . 
Model 1: «complete independence ». 
Model 2a: « fabric-by-form interaction only », i.e. fabric and form are « com-
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pletely independent » of context. 
Model 2b: « context-by-form interaction only », i.e. context and form are 
« completely independent » of fabric. 
Model 2c: « context-by-fabric interaction only », i.e. context and fabric are 
« completely independent » of form. 
Model 3a: « fabric-by-form and form-by-context interactions », i.e. fabric is 
« conditionally independent » of context, given the form. 
Model 3b: « fabric-by-form and fabric-by-context interactions », i.e. form is 
« conditionally independent » of context, given the fabric. 
Model 3c: « form-by-context and fabric-by-context interactions », i.e. fabric is 
« conditionally independent » of form, given the context. 
Model 4: « ali pairwise interactions », or « partial association » of form and 
fabric, fabric and context, and form and context. 
Model 5: « all interactions », the saturated model. 

There are six routes from Model 1 (complete independence) to Model 5 
(saturated) - via Models 2a and 3a, 2a and 3b, 2b and 3a, 2b and 3c, 2c and 
3b, and 2c and 3c (see Fig. 1) - corresponding to different archaeological 
needs. 

Within each model, we can estimate the parameters and carry out a 
goodness-of-fit test. The four levels of unsaturated models to form a « nested 
hierarchy ~>, and their goodness-of-fit can be measured by the likelihood ratio 
statistics (BISHOP et al. 1975, 125) G2(1), G2(2), G2(3), G2(4). Both the G2 and 
the differences G2(1) - G 2(2), etc., are distributed as chi-squared statistics. 
We can partition the overall chi-squared statistic by writing 
G2(1) = (G2(1) - G2(2)) + (G2(2) - G 2(3)) + (G2(3) - G2(4)) + G2(4). 

To find the 'best' model for the data, we start at the 'bottom' end (i.e. 
model 4) and test G2(4). 
If it fits the data (i.e. G 2(4) < criticai value), we move up to level 3 (i.e. 
either model 3a, 3b or 3c, as appropriate) and test both G2(3) and G2(3) -
G 2(4), with appropriate degress of freedom. 
If both fits are acceptable, we move to leve! 2; 
If either fails, we accept model 4. 
At model 2, we test both G2(2) and G2(2) - G2(3). 
If both fits are acceptable, we move up to model l; 
if either fails, we accept model 3. 
At model 1, we test both G2(1) and (G2(1) - G2(2)). 
If both fits are acceptable, we accept model 1; 
if either fails, we accept model 2. 

This approach enables us to find the simplest model, out of a chosen hierar
chy of models, that fits the data reasonably. 
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1 [1J[2J[3] 

26 [23][ 1] 2b [31 ]{2] 2c I 12l!3l 

3a (23][31 l 3b (23][ 12] 3c !31J[12] 

4 (12][23][31] 

Fig. 1 5 [ 123] 

model x2 ci df prob 
1 742.9 393.3 204 0.0% 
2a 337.2 267.1 140 0.0% 
3a 202.0 182.8 54 0.0% 
3b 110.8 89.5 110 46.2% 
4 21.8 17 .5 26 69.8% 

goodness-of-fit statìstics 
model ci df prob 
4 17.5 26 89.3% 
3a 182.8 54 0.0% FAILED 
accept model 4 (all pairwise interactions) 

goodness-of-fit statistics 
model c2 df prob 
4 17 .5 26 89.3% 
3b 89.5 llO 92.5% 
3b*4 71.9 84 82.3% 
2a 267.1 140 0.0% FAILED 

accept model 3b (fabric-by-form and context-by-fabric interactions) 

Table 1 
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model x2 G2 df prob 
1 555 .8 261.5 108 0.0% 
2b 223 .6 188.3 62 0.0% 
3a 107.7 106.8 42 0.0% 
3c 87.4 81.3 16 66.7% 
4 13.6 10.5 16 49.3% 

goodness-of-fit statistics 
model G2 df prob 
4 10.5 16 84.1% 
3a 106.8 42 0.0% FAILED 
accept model 4 (ali pairwise interactions) 

goodness-of-fit statistics 
model G2 df prob 
4 10.5 16 84.1% 
3c 81.3 16 0.0% FAILED 

accept model 4 (all pairwise interactions) 

Table 2 

model x2 Gi df prob 
1 466.6 232.9 38 0.0% 
2c 90.1 65.7 19 0.0% 
3b 7.9 9.4 10 63.7% 
3c 50.9 44.7 7 0.0% 
4 6.4 7.8 7 49.3% 

goodness-of-fit statistics 
model G2 df prob 
4 7.8 7 35. 1% 
3c 44.7 7 0.0% FAILED 
accept model 4 (all pairwise interactions) 

goodness-of-fit statistics 
model G2 df prob 
4 7.8 7 35.1% 
3b 9.4 10 49.6% 
3b*4 1.6 3 66.3% 
2c 65.7 19 0.0% FAILED 

accept model 3b (fabric-by-form and context-by-fabric interactions) 

Table 3 
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The simplest statistically is complete independence of fabric, form and con
text (model 1), i.e. the proportions of the different forms are the same in all 
fabrics, and the proportions of both are the same in all contexts. This is ar
chaeologically incredible. 

The next simplest (model 2a) is that different forms occur in different 
proportions in different fabrics, but that the proportions of fabrics and forms 
are the same in all contexts. This may occur if ali the context are 'similar' , or 
the assemblages are so small that differences between them are not significant. 

In model 2b the proportions of forms may vary from context to context, 
but the proportions of fabrics may not. This corresponds to a 'functional' in
terpretation of the differences between the contexts. This interpretation de
pends on a suitable level of definition of forms (see Section 4.3). By contrast, 
in model 2c the proportions of fabrics may vary from context to context, but 
not the proportions of forms. This corresponds to either a 'chronological' or a 
'spatial' interpretation of the differences between the contexts, depending on 
their spatial relationships. This interpretation depends on a suitable definition 
of fabric, and on the assumption that different sources bave limited life-spans 
within the period being considered. This is true for (e.g.) Roman and medieval 
pottery in South-east England, but may not hold elsewhere. 

Model 3a introduces the possibility that the proportions of fabrics and 
forms may vary from context to context; but the proportions of fabrics only as 
a side-effect of variations in forms and the preference of certain forms for cer
tain fabrics. 

Model 3b allows the proportions of fabrics to vary, and the proportions of 
forms to vary as a side-effect. 

Model 3c allows the proportions of fabrics to vary between some contexts, 
and the proportions of forms to vary between others. 

Model 4 allows proportions of fabrics and of forms to vary independently 
of each other from context to context, but also to interact on each other. This 
would allow for functional variability (forms) as well as chronological variability 
(fabrics and forms) and geographical variability (fabrics). 

Model 5 is the most complicated, and one hopes it would not be needed as 
it would be difficult to interpret. It is bere as a 'backstop' should all other 
models fail to fit the data. 

In practice there are many fabric-by-form combinations that cannot exist, 
and many fabric-by-context and form-by-context ones that do not exist. In 
statistica! terms, the design of the data is incomplete. The theory far handling 
incomplete tables is known as the theory of quasi-log-linear models (BISHOP et 
al. 1975, 177-228). There is not the space to go into the details here: the main 
points to note are that the parameters have to be estimated by a more compii-
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cated, iterative, process, and that the calculation of the number of degrees of 
freedom must be adjusted to take account of the numbers of 'empty' cells in 
the tables. 

2.5 Practical problems (i) 

Work on assemblages of Roman pottery from London and Silchester im
mediately revealed a serious problem: different types j gave different estimates 
.t\, making it apparently impossible to transform a whole assemblage. This 
arises when not all types have the same statistica} distribution of the values wi, 
i.e. they are not statistically homogeneous. One reason could be a Jack of ar
chaeological homogeneity in the assemblage. 

We say that an assemblage is archaeologically homogeneous if all the types 
in it have the same post-depositional history, i.e. have been subjected to the 
same series of 'events' (ORTON 1982a, 3). While archaeological inhomogeneity 
implies statistica! inhomogeneity, the reverse is not always the case. 

A simple numerica! example should clarify this point: 
Suppose an assemblage consist of two types, one of which breaks into 100 frag
ments and the other of which does not break at all. The history consists of a 
single breakage event followed by a 50% sampling. For the first type, some 
fraction of almost every vessel will be retrieved, leading to an average complete
ness of about 50%. For the second, about 50% of the vessels will be retrieved, 
with an average completeness of 100%. The assemblage is therefore archaeolog
ically homogeneous but statistically inhomogeneous. 

This situation arises whenever one (or more) type(s) is 'chunky', i.e. breaks 
into fewer measurable fragments than the generai run of types, and is here 
called the quantum effect. It seems likely that whenever we encounter values of 
w that are significantly above average for their assemblage, we have 'chunky' 
types, but whenever the values of w are below average for their assemblage they 
indicate residuai types (i.e. types which bave a longer post-depositional history, 
and have been subjected to more events). In some cases there may be a 'high' 
group of types and a 'low' group, and it may not be clear whether the former 
is chunky or the latter residua!. The answer is to compare across several assem
blages; a 'chunky' type is likely to be chunky wherever is occurs, but residuai 
types are likely to be residua! is some assemblages but not others. 

To be able to use the theory, we must detect the chunky types (if any) and 
remove their effect from the transformation. We proceed in three stages: 
(i) detect the presence of chunky types by use of an F-test (KENDALL, STUART 

1973, 522) on the w-values of all the types. Theory suggests, and experi
ence confirms, that the test should be carried out on the logarithms of the 
values. 

96 



Statistica/ analysis o/ ceramic assemblages 

(ii) if the result of the F-test is significant, detect which types are the chunky 
ones. This is the problem known as multiple comparisons - the sorting out 
from an inhomogeneous set of [wJ those particular values of j which cause 
the setto be inhomogeneous. Much has been written on this topic: a good 
generai account is given by Miller ( 1981) and the la test overview is by 
Hochberg and Tamhane (1987). 
After considerable experimentation, we found that the best approach for 
our problem was to carry out a t-test between the w for each type and the 
overall mean - a version of the LSD test (FISHER 1935). This test can be 
used to detect both chunky forms and chunky fabrics, as well as to compare 
contexts to help in the elucidation of site formation processes. 

(iii) Here we must depart from out usual practice of dealing with generai meas
ures, and look at one in particular. We shall see in Section 4 .1 that the 
most satisfactory measure for our purposes is the vessel equivalent (v.e.), 
which measures each sherd family as a proportion of the parent vessel. This 
is rarely practical, and it is usually necessary to estimate the v .e. from some 
easily recognisable part of the vessel, e.g. the rim, base or handle. This 
gives rise to an estimated vessel equivalent (eve) . A measure based on part 
of a vessel is likely to be more chunky than one based on the whole vessel, 
because the part will always break into fewer fragments than the whole. 

In this section, therefore, we look at the situation where the v.e.s of the 
types are not themselves chunky, but cannot be measured, but the eves, which 
can be measured, are chunky. It may be useful to think of eves as based on some 
specific part of the vessel, e.g. the rim, although the following argument will 
be more generai. 

We assume that for the 'ordinary' types, the eve provides an adequate esti
mate of the true vessel-equivalent, though even here some slight over
estimation of the mean value seems likely. We need to find an estimate of the 
distribution of the v.e.s of the chunky types, and especially of the mean, which 
is better than that provided by the eves. If the assemblage is archaeologically 
homogeneous, then all types have the same distribution of the v.e.; we can 
therefore use the 'ordinary' distribution as an estimate of the distribution of 
the v.e.s of the 'chunky' types. 

It might be argued that the difference in distribution between chunky and 
ordinary types removes the grounds for our assumption of archaeological 
homogeneity. This is not so: departures from archaeological homogeneity are 
signalled by unusually low values of w, not by the high ones exhibited by the 
chunky types (see above). 

What this means in practice is that we retain the total W for each chunky 
type, but replace the individuai values by a set of values which have the same 
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total, but have the frequency distribution of the ordinary types. We remember 
(4), n; = ((m - 1)/m)W2/S2 for all ;. 
Suppose the first m; records are chunky and the other m_; are ordinary. 
Treating the chunky types as unknown, we need to estimate their contributions 
to m, w and s2. 
Note that we need to estimate their contribution to m because of ghost records, 
i.e. vessels which are represented but not by measurable fragrnents (e .g. rims). 
(i) m: estimate m. = m .(WjW .) and m = m . + m. = m .(W /W .) 

J A-· -1 -i l _, -i 
(ii) W: either estimate W = W -;(m/m_;) 

or take it as 'given' because we know W . 
(equivalent since W = W .(m/m .) = W .m .(W/W .)/m . = W). 

A -1 -· -1 -· -· -· (iii) S2
: S2 = S_;2(m/m_i) = S_/(W/W -;>· 

So (4) becomes n = ((m - 1)/m)WW -;S-/ 
= (1 - W /m .W)WW .S .2 - (8). 

- -· -1 -1 
This equation enables us to accomodate the quantum effect within our defini-
tion of a statistically homogeneous assemblage, and stili use the transformation 
to pseudo-counts and contingency table theory. 

2.6 Practical problems (ii) 

Attempts to treat assemblage data from London and Silchester as three-way 
contingency tables had led usto adopt the theory of quasi-log-linear models be
cause of the Iarge numbers of zeros in the tables. Even so, the presence of many 
'small' cells gave rise to two problems: 
(i) frequently, the large number of such cells would contribute greatly to the 

number of degrees of freedom, but only a litde to the overall X2 or G2 

statistic, thus masking any potential significance of other parts of the 
table, 

(ii) occasionally, the presence of a very small expected value together with a 
small observed value would give an abnormally high contribution to the 
x2 or G2 statistic. 

The answer seemed to be to merge or delete rows and/or columns of the tab
les to remove 'small' cells. Conventional theory sets a general minimum 'expect
ed' value of 5 per cell with an absolute minimum of 1 for the chi-squared test 
to be appropriate (COCHRAN 1954; CRADDOCK, FLOOD 1970 suggest a limiting 
average value of around 1 in the case when the expectcd values are roughly 
equal). 

It was therefore decided to adopt the criterion that all cells should have an 
expected value of at least 1.0, and that merging of contexts, fabrics and forms 
should be carried out with this aim in view. Studies carried out on Silchester 
phase 1 showed that this level seems to give very satisfactory results. 
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The technique srd (simultaneous reduction of dimension) was devised to 
merge or delete rows and columns of a two-way table in a rational way. Full de
tails are to be published (0RTON, TYERS 1990); the generai principles are set 
out below: 
(i) only rows or columns containing 'small' cells are 'flagged', i.e considered 

for merging (though they may merge with a row or a column which does 
not contain 'small' cells), 

(ii) only merges which make sense archaeologically are permitted, 
(iii) rows or columns are selected for merging on the basis of the reduction in 

X2 brought about by merging them: those causing the smallest reduction 
are merged first, 

(iv) when all permissible merges have been made, any rows or columns which 
stili have 'small' cells are deleted from the analysis. 

This is basically a two-way approach: to extend it to the three-way table we 
introduce the idea of a 'doubly-reduced' table, which is constructed as follows: 
(i) suppose we have reduced the fabric-by-form marginai table, i.e. we are 

working with model < 2 > < 3 > (see below: exactly analogous procedures 
hold for the other models). 

(ii) we construct a new three-way table in which the rows are the unflagged 
fabric-by-form combinations and the columns are contexts. 

(iii) we then reduce this table by srd, except that we allow only columns (i.e. 
context) merges. To allow row-merges would destroy the two-way nature 
of the margina! table. 

(iv) when this procedure stops, all columns, consisting entirely of flagged cells 
are deleted, and all rows consisting entirely of flagged cells are themselves 
flagged. This flagging is carried back to the marginai table (in this case 
< 2 > < 3 >), and any rows or columns in this table which now consist en
tirely of flagged cells are deleted. 

The quasi-log-linear analysis is then carried out on the doubly-reduced tab-
les. The models for the reduced table are listed below: 

lA: < 2 > < 3 >: independence of fabric and form in a reduced table, 
lB: < 3 > < 1 > : independence of form and context in a reduced table, 
lC: < 1 > < 2 >: independence of context and fabric in a reduced table. 

IIA: < 23 > < 1 > : independence of fabric-by-form and context it a doubly
reduced table, 
IIB: < 31 > < 2 > : independence of form-by-context and fabric in a doubly
reduced table, 
IIC: < 12 > < 3 >: independence of context-hy-fabric and form in a doubly
reduced table. 

The reduced tables do not necessarily share the same groupings of the three 
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A 1 B e 1 

2o 2b 2c 

/~ /~ /~ 
3o 3b 3o 3c 3b 3c 

~/~/ ~/ 
4 4 4 

5 5 5 

Fig. 2 

variables. These models correspond to models 2a-c in the log-linear analysis. 
Having ensured compatibility in the data structures, we can now integrate 

srd into the overall (quasi-)log-linear approach. We break the overall hierarchy 
of models (see Section 2.4) into three sub-hierarchies (see Fig. 2): 
A: models 1, 2a, 3a and 3b, 4, 5; 
B: models 1, 2b, 3a and 3c, 4, 5; 
C: models 1, 2c, 3h and 3c, 4, 5. 

We then run quasi-log-linear analysis on the doubly-reduced table of model 
IIA, using sub-hierarchy A, on the doubly-reduced table of model IIB, using 
sub-hierarchy B, and on the doubly-reduced table of model IIC, using sub
hierarchy e. 

This leads to three 'accepted' models (see Section 2.4), which we must in
terpret. But before we do so we must reject any 'collapsed' tables (i.e. doubly
reduced tables with only one value of one or more variables) . If all three tables 
collapse, we reject the entire dataset as inadequate. lt would be too simple to 
look for the 'best' overall model, since the different hierarchies may be telling 
us differerit things. For example, model 2b might be the accepted model for one 
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grouping of contexts, while model 2c might be accepted for a completely differ
ent grouping. This would indicate form-by-context and fabric-by-context inter
actions cross-cutting each other, suggesting functional differences between 
some contexts but chronological differences between others. T o choose one 
model as 'best' would lose one of these interpretations. 

3. RESULTS 

3 .1 Correspondence analysis 

We here present the results of a correspondence analysis carried out on data 
from the Lime street site, after transformation to pseudo-counts but without 
any special treatment, e.g. no types were omitted from the calculation of the 
pseudo-totals. The program used is part of the iastats package (DUNCAN et al. 
1988), based on one published by Greenacre (1984). Two analyses were made: 
forms by phase and fabrics by phase. 

FORMS BY PHASE 
The lst principal axis (50% of total inertia) is dominated by FINE BOWL 

(90%) and phase 6 (97%). The 2nd principal axis shows a contrast between 
FLASK (6%), BEAKER (32%) and perhaps BOWL (11%) against AMPHora 
{13%) and FINE CUP (13%), matched by a contrast between phase 3 (50%) 
and phase 4 (46%). These hint a possible functional differences which need fur
ther investigation. One would not expect functional differences to appear clear
ly, if at all, at the level of phase-assemblages. 

FABRICS BY PHASE 
The lst principal axis (35% of total inertia) is dominateci by fabrics SHEL 

(56%) and SAND (20%), and by a contrast between phases 1and2 (77% and 
9% respectively) and phase 4 (11%). On the 2nd principal axis, fabrics BB2 
(54%) and KOLN (4%) stand out, as does the contrast between phases 5 {70%) 
and 3 (23%). 

The picture is clearer when both are seen together {Fig. 3). Here we can see 
the characteristic parabola shape of a chronological sequence (MADSEN 1988, 
24). Only phase 6 is out of order; its data point is of low quality (lies 'off the 
plot') and there may be a functional difference. An 'early' fabric (SHEL) is at 
the beginning of the sequence and three 'late' ones (for this site) - BBl, BB2 
and KOLN - are at the end. MORT occupies a centrai position; it is a ' rag
bag' type comprising a variety of rare and unidentified fabrics. 
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Scattergram for columns: X1 Y1 ... X2Y2 
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Fig. 3 - Hollow symbols rcprescnt typcs, solid symbols represent phascs. 

3.2 Silchester phase 2 

Quasi-log-linear analysis with srd as a preliminary data-reduction technique 
technique was carried out on this dataset. At this stage we have allowed any 
groups of fabrics, forms or context to be merged as necessary: later versions of 
the program will allow for the input of specialist archaeological knowledge at 
this stage. There were initially 79 contexts, 42 fabrics and 11 forms. 

Using the < 23 > < 1 > model, the double srd reduces the dataset to 15 
context-groups, 3 fabric-groups and 5 form-groups . 

The quasi-log-linear analysis shows good fits for models 4 and 3b, but very 
bad fits for models 1, 2a and 3a. This is conclusively in favour of model 3b, 
i.e . of fabric-by-form and context-by-fabric interactions, but no direct context· 
by-form interaction. Such an interpretation is supported intuitively by a visual 
inspection of the final marginai tables. 

Using the < 31 > < 2 > model, the double srd reduces the dataset to 3 
form-groups, 14 context-groups and 3 fabric groups. 
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The quasi-log-linear analysis shows a good fit for model 4, but very bad fits 
for models 1, 2a, 3a and 3c. This is conclusively in favour of model 4. 

Using the < 12 > < 3 > model, the double srd reduces the dataset to 6 
fabric-groups, 5 form-groups and 4 context-groups. 

The quasi-log-linear analysis shows good fits for models 3b and 4, but very 
bad fits for models 1, 2a and 3c. This is conclusively in favour of model 3b. 

CONCLUSI ON 

Model 3b is clearly the preferred one; it is accepted conclusively in both the 
hierarchies in which it occurs, and in the one in which it does not occur, neither 
model at level 3 is accepted . We conclude that « form is conditionally independ
ent of context, given the fabric ». 

In archaeological terms, the main differences between contexts are the fab
rics present in them; any differences in forms just reflect the fabrics. This would 
seem to imply that the main differences between the contexts are chronological 
rather than functional. 

The results are encouraging in that they are coherent - all the hierarchies 
« tell the same story ». However, this need not in generai be the case. A dataset 
could, for example, have strong interactions between some contexts and fab
rics, and between other contexts and forms. They should show up more strongly 
in different hierarchies, leading to the acceptance of (e.g.) model 3b in one and 
model 3c in another. 

4. PRACTICAL IMPLICATIONS 

4 .1 Comparison o/ the behaviour o/ different measures 

In this section we look at the various measures described in Section 1.2 in 
the light of the theory developed in Section 2.3. 

We recall equation (3) of Section 2.3, giving an expression for ni, the 
equivalent sample size for type j of an assemblage. We saw that ifa common 
value n existed, then we could transform the data to pseudo-counts and make 
use of the theory associated with data in the form of counts, e.g. contingency 
table theory and correspondence analysis. We saw that we could do this if a1l 
types had the same mean and variance of the measure w, after discounting 
chunky types. 

We now look at the four main measures discussed in Section 1.2: 
(i) vessels represented, (ii) vessel equivalents, (iii) weight, (iv) sherd count. 
(i) vessels represented: in this case, wi = 1 for all records, so it follows that 

the mean and variance are the same for all types j. 
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(ii) vessel equivalents: in this case, the condition holds if the completeness 
statistic has the same mean and variance for all types. This provides the 
rationale for the search for homogeneity and for means of achieving it. 

(iii) weight: the condition holds provided that each type has the same mean 
weight and variance of weight. lf weights are to be used, they must there
fore be scaled to a common mean weight for all types. This in practice leads 
to a vessel equivalent based on weight. 

(iv) sherd count: the condition holds if the statistic 'sherds present per vessel 
represented' has the same mean and variance for all types in an assemblage. 
This is unlikely to be thc case in practice. 

To sum up, only measures for which a complete vessel has the same value, 
regardless of its type, are suitable. The two such are vessels represented and ves
sel equivalents. However, earlier work (ORTON 1975; see Section 1.3) has 
shown vessels rcpresented to have a serious problem of bias. The only suitable 
measure for statistica! comparison of assemblages is vessels-equivalents. This 
justifies the use of eves, but leaves open the question of the best way of estimat
ing vessel equivalents. 

We here introduce the term pottery information equivalents (pies) for the 
transformed values of eves when applied to ceramic assemblages. The reason is 
that an assemblage totalling n pies has the same error structure, and therefore 
gives the same level of information about the proportions of its constituent 
types, as an assemblage of n complete vessels. 

lt should be noted that there is no simple relationship between pies and eves 
or any other statistic. The same number of eves can, for different types, give 
rise to different pies, depending on the distribution of the completeness of the 
type. Within an assemblage, the pie of a type depends not only on the type it
self, but also on all other types. The pie is therefore a thoroughly contextual 
variable. 

4 .2 The leve/ o/ recording 

For the theory of Section 2.2. to hold, the observations (in our notation, 
records) must be independent of one another. If two records, relating to the 
same assemblage, also relate to the same vessel, then those records are correlat
ed and the generai formulae we have derived in Section 2 do not hold. We can 
envisage this by considering an assemblage that consists of two types of com
plete vessels. Thc variance of the population of each type can be calculated 
through the standard binomia! formula, or equation (1) of Section 2.2, which 
gives the same result in this case. If we then break each vessel in half and record 
the halves scparately, applying equation (1) gives a value for the variance which 
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is 1/4 that of the originai value. In other words, we have halved the standard 
deviations of our estimates by simply breaking the vessels. Since we cannot act
ually increase the amount of information we have by breaking vessels, there is 
a nonsense here. We conclude from this reductio ad absurdum that the formula 
no Ionger holds - it must be modified to take account of the correlations be
tween the records of the two halves of each broken vessel. 

This implies that smallest unit that is permissible to record (for statistica! 
purposes) is the sherd family (SM!TH 1983), i.e. the set of all sherds from the 
same vessel in the same context or assemblage. In practice, we can relax this 
requirement; since sherds which have no rneasure do not contribute to the for
mula, they need not be included in the family, which becomes the measurable 
sherd family. For exarnple, if the measure is rim-eves, then only rim sherds con
tribute to the formula, and for the purposes of calculating proportions we need 
only sort the rim sherds into families. There may be other reasons for the more 
difficult and time-consuming task of sorting body sherds into families, but 
nevertheless there are potential savings. If, however, the measure is weight, 
then we cannot avoid the task of sorting all sherds into families, since all sherds 
have a weight. 

lt might be thought that, by saying that eves should be recorded by rneas
urable sherds farnilies, we are re-introducing the vessels-represented approach 
by the back door, since the number of records can be taken to be the nurnber 
of vessels represented. This is not so, for three reasons: 
(i) since eves are based on measurable (e.g. rim) sherds, the number of records 

is less than (or, in rare cases, equa! to) the number of vessels represented. 
The difference is the number of vessels represented only by sherds of meas
ure zero (e.g. body sherds). 

(ii) the treatment of the two statistics is different if contexts are merged. The 
number of record for the merged context is the sum of the numbers of the 
originai contexts, while the numbers of vessels represented is reduced to 
allow for cross-joining sherds. 

(iii) the reason for rejecting the vessels-represented statistic, namely its serious 
and unpredictable bias, is unaffected if we happen to be able to deduce it 
from other statistics. 

Two sorts of records may cause problems: 
(i) the conflated record: a record which contains measures of more than one 

vessel, e.g. the total measure of one type in one context. The data can be 
used but they will over-state the true variance. The seriousness depends on 
the degree of conflation. 

ii) the over-detailed record: a record containing less than a complete measurable 
sherd family. Variances cannot be calculated unless the data have been 
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flagged so that sherd families can be put together by merging records. If 
sherd families cannot be put together, the formula given here cannot be 
used. The data must be aggregated (e.g. to type-within-context level) and 
treated as an example of case (i). 

This argument might be seen as a case for using rim-eves as the measure, 
rather than (rim + base) eves or weight, especially if there is doubt about 
which base or body sherds belong to which rim. However, it is only one voice 
in a complex decision, and may be over-ruled by other factors. 

A generai point is that care and extra attention at the recording stage can 
give benefits in terms of reduced standard deviations of estimates of propor
tions. The extent to which the extra precision is worth the extra work is a mat
ter of judgement. 

Some theoretical work, confirmed by simulation, shows that split families, 
resulting in over-detailed records, are not likely to be a serious problem unless 
we are dealing with assemblages in which both completeness and brokenness are 
high. At least 25%, and possibly at least 40%, of an assemblage would have 
to be recorded as one or more records per family to lead to 'serious' (greater 
than 10%) errors in the estimates of standard deviations of proportions. 

4.3 Definition of fabrics and forms 

Throughout this work, there has been a tension between the need to ag
gregate data to make datasets acceptable for statistica! purposes, and the need 
to maintain a fine enough level of detail for useful archaeological interpretation. 
In generai, it is likely that some grouping of both fabrics and forms, as defined 
by conventional archaeological methods, will be needed before statistica! analy
sis can be undertaken. 

While it would be possible to leave this grouping in the hands of srd, under 
archaeological guidance as to which merges are allowed, it may be better to 
grasp the nettle and attempt to form preliminary groupings before starting the 
statistica! analysis. This must be done carefully, with the aims properly defined. 

The study of chronology has aspects other than the quantitative comparison 
of ceramic assemblages, which may frequently over-ride it. The two most im
portant are {i) archaeological stratigraphy and (ii) 'absolute' dates, provided by 
{e.g.) coins or particularly diagnostic types of pottery such as samian ware, often 
in the form of TPQs. A single piece of such qualitative data, e.g. the strati
graphic relationship between two contexts, or the presence of a single dated 
sherd in a context, may give more precise information than any amount of 
quantitative data. On the other hand, if such data do not exist, we must fall 
back on the quantitative data for (e.g.) seriation. Further, a quantitative analy
sis of well-stratified assemblages may well provide a framework for the dating 
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of less well stratified or isolated assemblages (see for example 0RTON 1982b). 
The combining of diff erent sorts of data in a chronological study is a topic 

in itself, and is beyond the scope of this project. Nevertheless, we offer some 
generai guidelines, while aware that they may need to be over-ruled in some 
practical situations: 
(i) forms should where possible be grouped according to style or decoration, 

as these are the aspects most likely to reflect chronological change. 
(ii) it may make sense to group fabrics according to source and, if possible, 

phases within sources. 
lf, however, we are looking for spatial {inter-site) differences, we should 

concentrate on groups of fabrics based on source. Groupings of forms may net 
be possible unless forms distinctive of sources can be identified. 

A search for functional or social differences demands a third approach. A 
grouping of fabrics according to technological aspects might be more appropri
ate, e.g. fine and coarse wares, or perhaps a finer division based on the degree 
of tempering. Forms should be grouped into functional types, e.g. cooking pots, 
drinking vessels. 

It is clear from this discussion that no one typology, of fabrics or of forms, 
will serve forali purpose. The recorder is thus faced with a dilemma - which 
to use for the basic recording of the pottery? The ultimate uses of the data will 
not be known at the time of recording, and it seems undesirable to straitjacket 
the data by immediately-perceived needs. The answer is to record in as fine a 
level of detail as is possible within the resources available, and to indicate ways 
in which types may be grouped for different purposes. The same data can then 
be analysed in different ways according to the groupings employed. 

4. 4 Definition o/ assemb/ages 

Assemblages can be defined at many levels - the individuai context, or 
groupings of contexts such as features, phases, sites or even a whole town or 
region. Again, there is a tension between the need to aggregate to create groups 
of the size needed for statistica! analysis, and the need to preserve the fine de
tail of individua! contexts. As in the cases of fabrics and forms, it may be 
preferable to carry out a preliminary grouping rather than leaving it all to srd. 

As before, there is scope for choosing different groupings to meet different 
needs. If chronology is the main concern, grouping contexts into stratigraphic 
phases will make sense. For inter-site spatial analysis, aggregation to site-groups 
is an obvious choice, but has a pitfall if sites are not exactly contemporaneous. 
Different proportions of different fabrics on the sites may then represent 
chronological as well as spatial differences . Grouping by phase within site may 
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then be a safer option. T o look for functional diff erences, groupings should be 
based on the supposed 'function' of contexts, though there is a danger of circu
lar argument here, and a finer level of detail may be safer. Social differences 
may be marked by differences between assemblages at the level of individua! 
buildings or features (e.g. pits or associateci groups of pits). 

On any site, there is likely to be more than one such need. Pottery should 
therefore be recorded according to the finest level of stratigraphic detail {usual
ly the context), with indications of which groupings of contexts would be ap
propriate for particular purposes. It may be desirable to sub-divide extensive 
layers spatially {e.g. by grid squares), but this should not be seen as an endorse
ment of « digging by spits », which can wreck an attempt at ceramic analysis 
(see e.g. GREEN 1980, 39, where division of a thick layer of dumping into 
three horizontal layers (nos. 412, 430 and 433, see Fig. 11) prevented any 
statistical analysis). 

There are statistica! implications in the merging of contexts to create larger 
assemblages. Ifa vessel occurs in more than one of the merging contexts, this 
leads to the situation of non-independent observations described in section 4.2. 
In principle, one should re-sort the materiai and re-catalogue any such vessels, 
but this is at best very time-consuming and at worst impossible, and very rarely 
clone in practice. However, theoretical considerations and the outcome of 
simulations (see Section 4.2) suggest that in most practical situations the merg
ing of contexts is unlikely to cause serious increases in standard deviations. 
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ABSTRACT 

As well as solving two long-standing theoretical problems, this work shows great potential 
for the interpretation of ceramic assemblagcs, and has implications for the way in which pottery 
is catalogued. Different sorts of interpretation (functional, chronological, distributional) are pos· 
sible at different levels of grouping (context, phase and site assemblages). 
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