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Kohonen SeLF-oRGAnIZInG MApS To UnRAveL pATTeRnS  
oF DenTAL MoRphoLoGy In SpAce AnD TIMe

1. Introduction

This review paper relies on two studies we conducted on the classifi-
cation of human dental morphological data by means of Artificial neural 
networks (Anns). Analysed samples included Middle pleistocene to early 
holocene populations across europe, north Africa and the Middle east. At 
that time, our research was directed to the classification of a recently discov-
ered dental sample (Tabun cave, Israel) that was compared to a reference 
database composed of a large number of different samples in order to confirm 
its belonging to the neanderthal teeth morphotype (coppa et al. 2007a). The 
reference database itself was published the same year (Manni et al. 2007).

In spite of the very wide application of Anns in the most diverse 
scientific disciplines, they have hardly ever been applied to physical anthro-
pology. prescher, Meyers and Graf von Keyserlingk (prescher et al. 2005) 
found them suitable for the investigation of a large collection of samples 
concerning the human nasal skeleton. corsini, Schmitt and Bruzek (corsini 
et al. 2005) and Buk, Kordik, Bruzek, Schmitt and Snorek (Buk et al. 2012) 
showed that Anns make possible a more accurate inference of the age at 
death, a crucial yet still far from being solved issue in physical anthropol-
ogy and forensic sciences. Mahfouz, Badawi, Merkl, Abdel Fatah, pritchard, 
Kesler, Moore, Jantz R. and Jantz L. (Mahfouz et al. 2007) have shown 
that Anns yield the best predictive accuracy and classification success 
rate, among a range of alternative methods, in sex determination accord-
ing to the dimension of the proximal femur. Another study concerning sex 
determination, a major issue in anthropology and forensic disciplines, was 
about the analysis of high-resolution computer tomography images of the 
femoral patella (kneecap) (du Jardin et al. 2009). 

To conclude this short list, Anns have been combined with Geographic 
Information Systems (GIS) to predict the location of possibly productive 
fossil-bearing localities (Anemone et al. 2011). our two studies (coppa 
et al. 2007a; Manni et al. 2007) confirm their usefulness in a variety of 
issues addressed by physical anthropologists, palaeontologists and forensic 
scientists (classification, prediction) and we advocate their further spread 
and dissemination in our discipline. This article may be a way to attract 
the attention of colleagues on Anns and, in order to provide some insight, 
we will methodologically review our studies by stressing their advantages 
over other existing methods.
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2. Artificial neural networks to classify human dental morphology

In the studies we have mentioned (coppa et al. 2007a; Manni et al. 
2007), we analysed dentitions of single individuals with the aim to display 
each of them as a single data point in a kind of multivariate representation. As 
a consequence, all the traits scored on each tooth of the maxilla and mandible 
of single individuals were coded as vectors having the components defined by 
a zero (0), or by a one (1), according to the presence or absence (established 
on the basis of selected breakpoints) of given morphological tooth traits 
listed in the repertorium of the ASUDAS system (Turner et al. 1991; Scott, 
Turner 1997) (see Fig. 1 for an example). Incomplete dentitions, dental ware 
and poor conservation often impeded the scoring of all traits, giving rise to 
missing data descriptors. This is commonplace in the study of anthropological 
collections of human remains, like bones and teeth, because samples or frag-
ments of the samples can be missing or broken. Teeth, very resistant, are less 
likely to be broken but are often missing; either they were never recovered in 
burials or excavations, or they could not be easily attributed to the individual 
they belong to or – and this also often happens – because they can fall down 
and get lost in collection repositories. nevertheless, given the chemical and 
physical properties of teeth, they are among the elements that best withstand 
taphonomic processes and they constitute one of the most abundant finds in 
archaeological sites (hillson 1986). 

The statistical constraints of missing data preclude a number of mul-
tivariate analyses, namely principal component Analysis, Multidimensional 
Scaling, Mean Measure of Divergence, Multiple correspondence Analysis, 
to mention only the most frequently-used ones. To overcome such limita-
tion, a customary approach in dental anthropology, and one often applied 
by us in both micro-regional (cucina et al. 1999; vargiu et al. 2009) and 
macro-regional (coppa et al. 1998, 2001, 2007b, 2007c, 2011; candilio 
et al. 2010) studies, consists in the merging of different samples into a single 
population vector by “averaging” available measures in individual samples, 
either by a mathematical average of real valued traits or by a majority-rule-
consensus for discrete measures like the presence/absence ASUDAS system. 
In this way, the operational units are no longer the single individuals but 
groups of them, populations, that have no missing components and are sta-
tistically tractable (Fig. 2, case A). Another solution, to overcome missing 
components in vectors, is to consider only those morphological traits that 
are available in a large number of individuals, meaning that analysed vectors 
do not correspond to the whole set of traits defined by the ASUDAS system 
but only to a subset of it.

According to this modus operandi, the database is larger when only a 
few traits are accounted in vectors (Fig. 2, case B), and smaller when more 



Kohonen self-organizing Maps

233

traits are considered (Fig. 2, case c). In both cases (B and c) the final analysis 
will be a compromise based on a small number of traits (lack of statistical 
resolution) or on a low number of individuals (lack of geographical and 
historical resolution). The “population approach” – though very useful and 
often adopted – has its limitations as it decreases the sample size and rubs off 
individual variability. If this is not a major problem in archaeological contexts 
yielding a large amount of copious anthropological samples, it becomes a 
serious limitation in less productive sites, as the pooling of the samples “to fill 
the gaps” may lead to a disharmonic chronology, provenance, or even genetic 
asset of those included in a population.

To conclude, the analysis by single individuals should be regarded as the 
optimal one in many paleoanthropological and forensic contexts where the 
estimation of intra-population variability, in the identification of migrants, 
and in the identification of different subpopulations, as can be the case – this 
is just an example – in an ancient battlefield where two very distinct human 
groups, that had no previous contact before, are buried together in a same 
site. In such cases, a classification method able to cope with missing descrip-
tors, in other words able to process single individuals, provides a much better 
insight into the past. This is why we turned to Anns.

3. Self-organizing Maps (SoMs) as an application of Anns

Anns are machines or software whose architecture is modelled after 
the brain. They typically consist of hundreds of simple processing units, 

Fig. 1 – ASUDAS scoring system (Turner et al. 1991; Scott, 
Turner 1997) for the description of human dental morpho-
logy. example of a dental trait scored on lower molars (the 
protostylid) that can be either present (M1) or absent (M2). 
our analyses were made according to 23 traits of this kind, 
thus giving rise to vectors having 23 binary descriptors.
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Fig. 2 – examples of data vectors defined by eight dental traits (A; B; c; D; e; F; G; h). on the top 
of the figure a dataset of 6 individuals is displayed and the descriptors correspond to the presen-
ce (1) or absence (0) of a given dental trait. Missing measures are reported as “?”. As all vectors 
present missing descriptors, we visually suggest the various strategies that are generally adopted 
to analyze them. In analytical projections (like MDS or pcA), no missing data can be processed, 
therefore individual samples can be converted in a population vector whose descriptors correspond 
to a majority rule consensus concerning available descriptors (case A). otherwise, a compromise 
between the number of individuals or the number of observations that are kept for the analysis has 
to be achieved. In B there are 4 individual vectors (#2; #3; #5; #6) with 4 traits (B; c; e; G; h); in c 
there are less individuals (#2; #3; #6) with more descriptors defining them (B; c; e; G; h). Artificial 
neural network analysis can be used to process the full set. please note that the vector correspon-
ding to “Individual #1” has been excluded from analyses due to its too many missing descriptors. 
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which are wired together in a complex communication network. each unit 
or node is a simplified model of a real neuron which fires (sends off a new 
signal) if it receives a sufficiently strong input signal from the other nodes 
to which it is connected. The strength of these connections may be varied 
in order to reach different patterns of node firing activity that adjust the 
network to different classification tasks. In a similar way, the brain con-
tains many billions of a very special kind of neurons that are organised 
into an intercommunicating network. Typically, each neuron is physically 
connected to many others and their connections are not merely on or off, 
since they can have a varying strength which allows the influence of a given 
neuron on one of its neighbours to be of different intensity (according to 
its distance from them). Many aspects of brain function, particularly the 
learning process, are closely associated with the adjustment of these con-
nection strengths. 

even if Ann were inspired by the function of biological neurons, 
many of the software and hardware designs have become far removed from 
biological reality. At the beginning of their application, Ann were intended 
as a simulation of neurophysiological processes but, today, they are simply 
considered to be tools to solve problems. popular applications concern 
discrete or real valued high-dimensional input, possibly noisy in the fields 
of phoneme recognition, image classification or pattern recognition. As an 
example, we will mention the automatic reading of ZIp codes by distribut-
ing machines in major post offices. camera images of the addresses on the 
envelopes of the letters are analysed with Ann to recognise the written 
pattern (ultimately the handwritten ZIp code) and to assign it to reference 
models (numbers from 1 to 9, including the 0). This example concerns the 
morphology of written numbers and, after all, our application to teeth con-
cerns morphology as well. Ann can be divided in two categories, supervised 
and unsupervised. In supervised applications a known dataset is used to train 
the network, meaning that the final classification of the items is expected 
to follow an expected categorisation (like the numbers in the ZIp codes). 

The Ann can be trained in different ways until the final classifica-
tion matches the classification expected (learning phase). once that Ann 
provide the desired classification of a known database, a new database can 
be analysed and classified according to the categories (clusters) that the test 
database yielded in the training phase. Differently, when a desired classifica-
tion is not known a priori, unsupervised learning has to be preferred. In this 
latter case there is no expected classification, and the Ann will provide the 
categorisation that best matches the variation of the data. In this latter case 
there is no need to use a test database and the data can be entered directly, 
though the classification output will differ if different datasets are used. In 
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both approaches, the supervised and the unsupervised one, data are clustered 
on the basis of similarity and correlation criteria.

We adopted a specific version of Ann: Self-organizing Maps (SoMs) 
(Kohonen 1982, 1984). SoMs are based on “competitive learning”, an 
adaptive process in which the cells in a neural network gradually become 
sensitive to different input categories (Kohonen 1982, 1984). SoMs consist 
of a two dimensional array of neurons, fully connected, with no lateral con-
nections, arranged on a square or hexagonal lattice (the map). vectors can 
be different skull measures or, as in the case of this review article, discrete 
traits of dental morphology. In this process:

1) identical vectors will be mapped at the same position of the map;
2) slightly different ones close to each other;
3) very different vectors will be mapped far from each other. 

The visual aspect of data representation obtained by SoMs is some-
what similar to a classical Multidimensional Scaling (MDS) or to a princi-
pal component Analysis (pcA) plot. SoMs are topology-oriented but the 
distances between mapped data points do not correspond to a MDS repre-
sentation (MDS takes a set of dissimilarities – as in a distance matrix – and 
returns a set of points such that the distances between the points tend to 
be as close as possible to the dissimilarities), though they describe more ac-
curately the neighbourhood of items (Kaski 1997). For this reason, SoMs 
should be preferred to MDS or pcA when all the different data (vectors) 
slightly differ one from another, as is often the case with paleontological 
data. A type of division of labour emerges in the network when different 
cells specialize to represent different data points. The SoM maps are divided 
into an arbitrary number of cells (5×5; 6×6; 7×7; etc.), according to user 
specifications and, once the analysis is done, each cell (neuron) corresponds 
to a cluster. 

The degree of specialisation is enhanced by the competition among 
cells: when an input arrives, the neuron that is best able to represent it 
“wins” the competition and can continue the learning process. If there is 
ordering between the cells, i.e. when the cells are located on a discrete map, 
the competitive learning can be generalised. If not, the winning neuron and 
its neighbours on the map are allowed to learn: neighbouring cells will 
gradually specialize to represent similar inputs and the representations of 
input data will become ordered. This is the essence of the SoM algorithm 
(Kaski 1997). The SoM algorithm is very robust, as it is indicated by the 
fact that it can go through vectors having missing descriptors (Kaski 1997). 
With sets of vectors presenting missing descriptor values, only the available 
values will contribute to the learning process of the map, while the missing 
values will not. For an effective learning process, it is obviously advisable 



Kohonen self-organizing Maps

237

to process vectors having only a few descriptors missing. each cell of the 
map, indexed with i, represents a reference vector mi whose components 
correspond to synaptic weights. In the exploration of data, the cell (indexed 
with c) whose reference vector is nearest to the input vector x, becomes the 
winner of the competition between all the different input vectors:
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where x(t) is the data point at time t and c = c (x(t)) is the index of the win-
ning unit. In practice the neighbourhood function is chosen to be wide at the 
beginning of the learning process, to guarantee global ordering of the map, 
and decreases in width and height, during the learning process. consisting in 
the winning selection by equation (1) and in the adaptation of the synaptic 
weights by equation (3), the learning process can be modelled with a neural 
network structure where the cells are coupled by inhibitory connections (Ko-
honen 1993; Kaski, Kohonen 1994). By virtue of its learning algorithm, 
the SoM forms a non-linear regression of the ordered set of reference vectors 
into the input surface. The reference vectors form a two-dimensional “elastic 
network” that follows the distribution of data.
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As we mentioned in the introduction, the purpose of the analysis (coppa 
et al. 2007a) was the classification of a new dental sample (TBn-Bc7) ex-
cavated in the Tabun cave (Israel) that could have been considered a new 
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Fig. 3 – example of a Self-organizing Map (Kohonen 1982) concerning the analysis of 126 den-
titions from different geographic locations and periods. The map is a 12×12 lattice corresponding 
to 144 neurons. Several samples can be mapped to a same neuron (not shown). We display only 
the position of the sample Tabun Bc7 that falls in an area whose neurons became specialized 
in the description of the neanderthal teeth morphotype. The map has been colored according 
to time periods and geographical areas. Gray cells correspond to empty neurons, meaning that 
no inputs were linked to them in the classification process (redrawn from coppa et al. 2007a).
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neanderthal specimen, though the issue was debated. Twenty-three dental 
morphological traits were scored on the Tabun Bc7 dentition and compared 
to a reference dataset of 125 known samples belonging both to neanderthals 
and to anatomically modern human specimens from europe, Middle east, 
and north Africa, that is covering a large area around the location where 
the sample TBn-Bc7 was discovered. The scoring values of the traits were 
dichotomised (presence/absence) and a first binary matrix (1/0) was obtained 
(similarly to the example provided in Fig. 1). When this database was processed 
with the Self-organizing Maps algorithm the obtained map (whose size we 
set at 12×12 cells) displayed an ordered representation (Fig. 3). 

Although the upper portion of the map shows an overlapping of dental 
features for individuals belonging to different periods and samples, this is not 
the case for neanderthal samples, which are grouped in the lower right corner 
of the lattice (in orange). It should be noted that highly divergent samples, 
in all SoM maps, tend to be mapped at one extreme of the map, as is the 
case for neanderthal teeth. The topology and shape of the neanderthal area 
suggest that the range of variability of dental features of neanderthals was 
different from, and non-overlapping with, the range of variation of the other 
reference samples and confirmed the belonging of the Tabun Bc7 sample to 
the neanderthal teeth morphotype. 

5. conclusions

We have successfully experimented the classification properties of Self-
organizing Maps (Kohonen 1982, 1984), an application of Artificial neural 
networks (Anns) and demonstrated how robust and reliable they are in 
processing databases heavily flawed by missing data, as it is the case of human 
dentitions excavated in an archaeological context. Anns, and SoMs in particu-
lar, are capable of classifying the variation through time and space of ancient or 
degraded human biological material and must be regarded as an invaluable tool 
to assess ancestry in both archaeological and forensic contexts and to establish 
the phyletic relations existing between fossil remains. This is why Anns will 
be particularly useful to assess if hybridisation occurred between neanderthal 
populations, or other species of the genus Homo, and populations of anatomi-
cally modern humans, and to empirically measure the extent of it (Duarte et 
al. 1999; Di vincenzo et al. 2012; condemi et al. 2013).

The classification that Anns enable, by making tractable the morpho-
logical variation of past human populations at the individual level, will lead 
to a more accurate depiction of intra-population variation and, ultimately, to 
a better description of many demographic processes of the past, like migration 
and admixture. In a wider scale, computational archaeology may also benefit 
of such neuronal classifications. The computational analysis of artefact features 
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pioneered by Stephen Shennan, like ceramics or basketry that can be dissected 
in many computationally tractable features (Shennan 2001; Jordan, Shen-
nan 2003), may also benefit of this methodology. In fact, similarly to what 
occurs in anthropology, artefacts are often incomplete and missing data (pieces, 
attributes, features). A more widespread application of Anns will certainly 
prove much convenient for the anthropological and archaeological commu-
nity of scholars and we hope to have here contributed to their dissemination.
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ABSTRAcT

The paper illustrates how the application of a specific version of Artificial neural net-
works, Self-organizing Maps (SoMs), enabled a more accurate analysis of human dental mor-
phology. SoMs enable the processing of individual samples (dentitions) because they can cope 
with missing data. In fact, in archaeological samples of human remains, teeth are often broken 
or missing making a complete set of morphological traits often impossible to achieve. other 
classification methods like principal component Analysis, Multidimensional Scaling, Mean 
Measure of Divergence, Multiple correspondence Analysis do not handle missing descriptors 
and incomplete data matrices have to be “filled in”, thus leading to a certain approximation in 
the outcome with a lack of geographical or temporal resolution, as many incomplete samples 
have to be merged into a virtual one that does not present missing descriptors. our discussion 
about the proficiency of SoMs, and Anns in general, in the exploration and classification 
of anthropological databases concerning morphology is based on a specific case study, that is 
the classification of a neanderthal sample. Through this example we would like to attract the 
attention of anthropologists and archaeologists to a very flexible methodology that is seldom 
applied, despite being widely used in many other disciplines.


