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COMPUTER SCIENCE PROCEDURES  
FOR THE LabORaTORy OF aNaLyTICaL aRCHaEOLOgy  

aND aRTIFICIaL aDaPTIvE SySTEMS (Laa&aaS)

1. Introduction. Data mining and artificial Neural Networks

Data mining is a recently developed research field based on achieve-
ments of other disciplines, such as computer science, through research in 
machine learning, and statistics, through the development of multivariate 
and computational methods. The techniques of machine learning, in the 
context of the development of technologies within the field of artificial 
intelligence-related studies, aim at extracting from data relationships and 
patterns for the generation of a model of a phenomenon, which allows 
not only to reproduce the data generating process, but also to generalise 
what has been observed in relation to data not yet in our possession, to 
define decision support tools to formulate and validate hypotheses, to 
simulate scenarios of action. Data mining is an integrated set of analytical 
techniques, divided into various procedural steps ranging from modeling 
to exploration and features selection designed to extract unknown a priori 
knowledge from large datasets, apparently containing no regularity and 
important relationships

Data mining activity is not limited to the creation of query tools 
formulated through the SQL language or sophisticated data-retrieval tools 
aimed at providing multidimensional displays reports. If these tools allow 
to extract information from the database, the extraction process is strongly 
dependent on deductive research hypotheses formulated explicitly by the 
user. Moreover, this extraction is not inspired by modelling and synthesis 
provided by statistical methodology. In case the number of variables to be 
analysed simultaneously is high, tens or hundreds, the process of generating 
a hypothesis and the database analysis for the purpose of verification or 
falsification is no longer feasible. but data mining cannot be limited to the 
application of statistical methodology. Compared to the methods developed 
in machine learning, statistical methods suffer from the strong dependence 
on the data and a conceptual paradigm of reference. although these fac-
tors have contributed to the definition of consistent and rigorous methods, 
they have limited the ability to quickly respond to requests advanced by 
methodological developments of information technology and the develop-
ment of the applications of machine learning. Statisticians have initially 
disputed that in data mining there is not a unique theoretical model, but 
many competing models that are selected on the basis of test data. It fol-
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lows that it would always be possible to find a model, although complex, 
which fits to the data. In addition, the abundance of data could lead to find 
non-existent relations. although these considerations are valid, modern data 
mining methodologies aim to define procedures for model validation and 
thus for the estimate of its predictive capability, of its function as an effective 
decision support tool, as a tool for exploration of alternative hypotheses 
and possible scenarios, especially in the case where the large mass of data 
does not allow, by itself, to formulate a hypothesis or define a model. In 
this chapter we propose a graph-based data mining and an artificial neural 
network-based data mining.

graphs become increasingly important in modeling complicated struc-
tures, such as circuits, images, biological networks, social networks, the Web. 
Many graphs search algorithms have been developed in chemical informatics, 
computer vision, video indexing and text retrieval. With the increasing de-
mand on the analysis of large amounts of structured data, graph mining has 
become an active and important theme in data mining. Much of the data is 
structural in nature, or is composed of parts and relations between the parts, 
so a need exists to develop techniques to analyse and discover concepts in 
structural databases. We will propose a multidimensional data analysis based 
on a graph theoretic concept, called Minimum Spanning Tree. For many 
purposes a minimum spanning tree can capture the key essential information 
of a dataset. Multidimensional datasets can be represented as a minimum 
spanning tree without losing any essential information. 

Three different Minimum Spanning Trees will be showed: in the first two 
cases, the metrics which defines trees properties are two well-known statisti-
cal measures, Linear Correlation and Prior Probability. The properties of the 
third tree are based on the innovative contribution of a new artificial neural 
network, the auto Contractive Map (auto-CM), designed by P.M. buscema 
at the Semeion Research Center of Rome, Italy.

auto-CM is an unsupervised network, a system that can learn to repre-
sent particular input patterns in a way that reflects the statistical structure of 
the overall collection of input patterns. by contrast with supervised learning or 
reinforcement learning, there are no explicit target outputs or environmental 
evaluations associated with each input. The goal of this kind of learning is 
to build representations of the input that can be used for decision making, 
predicting future inputs, efficiently communicating the inputs to another 
machine, etc. Unsupervised learning can be thought of as finding patterns in 
the data what would be considered pure unstructured noise. Two very simple 
classic examples of unsupervised learning are clustering and dimensionality 
reduction, the projection of input of M dimension in an output space with 
lesser dimension, maintaining topological properties of that input. after intro-
ducing the learning equations of auto-CM networks, we will show a simple 
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application through a well-known benchmark toy dataset, referring the reader 
to other chapters of the volume for applications within the aRCHEOSEMa 
project (Ramazzotti 2012, 2013). 

2. Minimum Spanning Tree (MST)

a graph is a mathematical abstraction that is useful for solving many 
kinds of problems. Fundamentally, a graph consists of a set of vertices, and 
a set of edges, where an edge is an object that connects two vertices in the 
graph. More precisely, a graph is a pair (v, E), where v is a finite set and E is 
a binary relation on v, to which it is possible to associate scalar values defined 
by a specific metrics. v is called a vertex set whose elements are called vertices. 
E is a collection of edges, where an edge is a pair (u, v) with u, v belonging 
to v. In a directed graph, edges are ordered pairs, connecting a source vertex 
to a target vertex. In an undirected graph, edges are un-ordered pairs and 
connect the two vertices in both directions, hence in an undirected graph (u, 
v) and (v, u) are two ways of writing the same edge – Minimum Spanning 
Trees produced by research experimental software aRCHEOSEMa Lab (see 
appendix) – are visualised and manipulated by the free open source software 
gEPHI v. 0.8.1, an interactive visualisation and exploration platform for all 
kinds of networks and complex systems, dynamic and hierarchical graphs 
(for information and tutorials visit: https://gephi.org/).

The graph-theoretic representation is not constrained by any a priori 
semantic restriction: it does not say what a vertex or edge actually represents. 
They could be cities with connecting roads, or web-pages with hyperlinks, and 
so on. These semantic details are irrelevant to determine the graph structure 
and properties; the only thing that matters is that a specific graph may be 
taken as a proper representation of the phenomenon under study, to justify 
attention on that particular mathematical object. an adjacency-matrix repre-
sentation of a graph is a 2-dimensional vxv array, where rows represent the 
list of vertices and columns represent edges among vertices. To each element 
in the array is assigned a boolean value saying whether the edge (u, v) is in 
the graph. a distance matrix among v vertices represents an undirected graph, 
where each vertex is linked with all the others but itself (Tab. 1):

A B C D … Z
A 0 1 1 1 1 1
B 1 0 1 1 1 1
C 1 1 0 1 1 1
D 1 1 1 0 1 1
.. 1 1 1 1 0 1
Z 1 1 1 1 1 0

Tab. 1 – adjacency matrix.
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The Minimum Spanning Tree problem is defined as follows: find an 
acyclic subset T of E that connects all of the vertices in the graph and whose 
total weight (the total distance) is minimised, where the total weight is given by:

array is assigned a Boolean value saying whether the edge (u,v) is in the graph. A distance matrix 

among V vertices represents an undirected graph, where each vertex is linked with all the others but 
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The first algorithm for finding a minimum spanning tree was developed 
by Czech scientist Otakar borůvka in 1926 (borůvka 1926). Its purpose was 
an efficient electrical coverage of Moravia. There are now two algorithms 
commonly used, Prim’s algorithm (Prim 1957) and Kruskal’s algorithm 
(Kruskal 1956). all three are greedy algorithms, following the problem solv-
ing heuristic of making the locally optimal choice at each stage with the hope 
of finding a global optimum. In many problems, a greedy strategy does not in 
general produce an optimal solution, but nonetheless a greedy heuristic may 
yield locally optimal solutions that approximate a global optimal solution 
in a reasonable time. Obviously, the Kruskal algorithm generates one of the 
possible MSTs. In fact, in a weighted graph more than one MST is possible. 
applications of MST include the design of various types of distribution net-
works in which the nodes represent cities, centers, etc.; and edges represent 
communication links (fiber glass phone lines, data transmission lines, cable 
Tv lines, etc.), high voltage power transmission lines, natural gas or crude oil 
pipelines, water pipelines, highways, etc. The objective is to design a network 
that connects all the nodes using the minimum length of cable or pipe or 
other resource. The minimum cost spanning tree problem also appears as a 
sub-problem in algorithms for many routing problems such as the traveling 
salesman problem.
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MST have long been used for data classification in the field of biology 
(States et al. 1993; Xu et al. 2001, 2002), for data classification in the field 
of image processing and pattern recognition (Duda, Hart 1973; gonzales, 
Winz 2002; Ma et al. 2000) and in many other research fields (Devilliers, 
Dore 1989; Tapia, Rojas 2004; assunção et al. 2006). a Minimum Spanning 
Tree is generally considered as a skeleton of a graph. For many purposes a 
minimum spanning tree can capture the key essential information of a graph. 

Multidimensional dataset can be represented as a minimum spanning 
tree without losing any essential information for the purpose of clustering. 
From conceptual point of view, the MST represents the energy minimisation 
state of a structure. In fact, if we consider the atomic elements of a structure 
as vertices of a graph and the strength among them as the weight of each edge, 
linking a pair of vertices, the MST represents the minimum of energy needed 
so that all the elements of the structure preserve their mutual coherence. In 
a closed system, all the components tend to minimise the overall energy. So 
the MST, in specific situations, can represent the most probable state for the 
system to tend. To determine the MST of an undirected graph, each edge of 
the graph has to be weighted. So we need to define a way to weight each edge 
whose nodes are the entities of a dataset (records or variables).

3. Two base metrics: linear correlation and prior probability

It is possible to use any algorithm to weight the graph edges, although 
the final outcome will be in general quite different. It is therefore useful to 
review briefly some of the most used options in the current practice.

3.1 Pearson’s linear correlation

First it is necessary to calculate the linear correlation between each pair 
of variables of the assigned dataset:
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N = number of records of the assigned dataset; 
M = number of variables of the assigned dataset.

The equation (4) will generate a symmetric squared matrix with null 
diagonal, providing the linear correlation between each variable and any other. 
Through the following equation (5), the correlation matrix is transformed 
into a matrix of linear distances among the variables:
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ai,j = association strength between any couple of variables xi and xj of the 
assigned dataset; 
xi = value of any variable scaled between 0 and 1; 
N = number of records of the assigned dataset; 
M = number of variables of the assigned dataset.
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where Maxa = Maximum a matrix value.

4. advanced aNN metrics: auto Contractive Map Network (auto-
CM)

all of the above options have the advantage to be very fast computation-
ally, but their common, serious limit is to define the distance among variables or 
records by just picking them in couples. That means that each weight explains 
the association between two variables or records, but it does not take into ac-
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count the additional influence that other variables or records could exert on 
that specific couple. This situation is quite similar, say, to the case of ten children 
playing all together in a swimming pool. If one would pretend to explain their 
global behaviour by making the statistics of the interaction between all possible 
pairs of children, this would amount to skip all of the external constraints that 
the concomitant positions and movements of the other children are imposing on 
each given couple at each given moment. by skipping this crucial information, 
the actual mutual behaviour of each couple will be poorly understood, and a 
fortiori this will also be the case for the global picture that is built through the 
aggregation of such partial two-by-two views.The artificial Neural Network 
auto-CM could represent the best choice to compute a complete and a non-linear 
matrix of weights among variables or among records of any assigned dataset.

auto-CMs “spatialise” the correlation among datasets entities (record 
and variables) by constructing a suitable embedding space where a visually 
transparent and cognitively natural notion such as “closeness” among entities 
reflects accurately their associations. This “closeness” can be converted into a 
compelling graph-theoretic representation that picks all and only the relevant 
correlations and organises them into a coherent picture. Such representation 
is not actually constructed through some form of cumbersome aggregation of 
two-by-two associations between couples of entities, but rather by building a 
complex global picture of the whole pattern of variation (buscema, grossi 
2007; buscema et al. 2008a; Helgason et al. 2009; buscema, Maurelli 
2011). In recent years this technique has been applied in a number of medical 
settings like alzheimer disease (buscema et al. 2008b; Licastro et al. 2010a, 
2010b), Down syndrome (Coppedè et al. 2010), gastro-oesophageal reflux 
disease (buscema, grossi 2008c), and myocardial infarction (Street et al. 
2008) showing the added value of this approach in comparison with traditional 
statistical techniques. These techniques are novel and therefore not entirely 
understood so far in all of their properties and implications, and that further 
research is called for to explore them. but at the same time we are convinced 
that their actual performance in the context of well-defined, well understood 
problems provides an encouraging test to proceed in this direction. The auto-
CM is characterised by a three-layer architecture: an Input layer, where the 
signal is captured from the environment, a Hidden layer, where the signal is 
modulated inside the auto-CM, and an Output layer, through which the auto-
CM feeds back upon the environment on the basis of the stimuli previously 
received and processed (Fig. 1). Each layer contains an equal number of N units, 
so that the whole auto-CM is made of 3N units. The connections between the 
Input and the Hidden layers are mono-dedicated, whereas the ones between the 
Hidden and the Output layers are fully saturated, i.e. at maximum gradient. 
Therefore, given N units, the total number of the connections, Nc, is given by:

Nc = N (N + 1).
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all of the connections of auto-CM may be initialised either by assigning 
a same, constant value to each, or by assigning values at random. The best 
practice is to initialise all the connections with a same, positive value, close to 
zero. The learning algorithm of auto-CM may be summarised in a sequence 
of four characteristic steps:

1) Signal Transfer from the Input into the Hidden layer;
2) adaptation of the values of the connections between the Input and the 
Hidden layers; 
3) Signal Transfer from the Hidden into the Output layer; 
4) adaptation of the value of the connections between the Hidden and the 
Output layers. 

We write as m[s] the units of the Input layer (sensors), scaled between 
0 and 1; as m[h] the units of the Hidden layer, and as m[t] the units of the 
Output layer (system target). We moreover define v, the vector of mono-
dedicated connections; w, the matrix of the connections between the Hidden 
and the Output layers; and n, the discrete time that spans the evolution of 
the auto-CM weights, or, put another way, the number of cycles of process-
ing, counting from zero and stepping up one unit at each completed round 
of computation.

In order to specify the steps 1-4 that define the auto-CM algorithm, 
we have to define the corresponding signal forward-transfer equations and 
the learning equations, as follows:

1) Signal transfer from the Input to the Hidden layer:
 

a) Signal transfer from the Input to the Hidden layer: 
 

𝑚𝑚𝑖𝑖(𝑛𝑛)
[ℎ] =  𝑚𝑚𝑖𝑖

[𝑠𝑠] ∙ (1 −  
𝑣𝑣𝑖𝑖(𝑛𝑛)

𝐶𝐶 ) (9) 

 
where C is a positive real number not lower than 1, which we will refer to as the contraction 
parameter, and where the (n) subscript has been omitted from the notation of the input layer units, as 
these remain constant at every cycle of processing.  

 
1) Adaptation of the connections through the variation ∆𝑣𝑣𝑖𝑖(𝑛𝑛) , which amounts to trapping the energy 
difference generated according to equation (9): 

 

∆𝑣𝑣𝑖𝑖(𝑛𝑛) =  (𝑚𝑚𝑖𝑖
[𝑠𝑠] − 𝑚𝑚𝑖𝑖(𝑛𝑛)

[ℎ] )  ∙ (1 − 
𝑣𝑣𝑖𝑖(𝑛𝑛)

𝐶𝐶 ) (10) 

 
𝑣𝑣𝑖𝑖(𝑛𝑛+1) =  𝑣𝑣𝑖𝑖(𝑛𝑛) +  ∆𝑣𝑣𝑖𝑖(𝑛𝑛) (11) 

 
2) Signal transfer from the Hidden to the Output layer: 

 

𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖(𝑛𝑛) =  ∑ 𝑚𝑚𝑗𝑗(𝑛𝑛)
[ℎ] ∙ (1 −  

𝑤𝑤𝑖𝑖,𝑗𝑗(𝑛𝑛)

𝐶𝐶 )
𝑁𝑁

𝑗𝑗=1
 (12) 

  

𝑚𝑚𝑖𝑖( )
[𝑡𝑡] =  𝑚𝑚𝑖𝑖(𝑛𝑛)

[ℎ] ∙ (1 −  
𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖(𝑛𝑛)

𝐶𝐶 ) (13) 

  
3) Adaptation of the connections  𝑤𝑤𝑖𝑖,𝑗𝑗(𝑛𝑛)through the variation ∆𝑤𝑤𝑖𝑖,𝑗𝑗(𝑛𝑛)  , which amounts, accordingly, 
to trapping the energy difference as to equation (13): 

 

∆𝑤𝑤𝑖𝑖,𝑗𝑗(𝑛𝑛)  =  (𝑚𝑚𝑖𝑖(𝑛𝑛)
[ℎ] − 𝑚𝑚𝑖𝑖(𝑛𝑛)

[𝑡𝑡] )  ∙ (1 −  
𝑤𝑤𝑖𝑖(𝑛𝑛)

𝐶𝐶 ) ∙ 𝑚𝑚𝑗𝑗(𝑛𝑛)
[ℎ]  (14) 

 
𝑤𝑤𝑖𝑖(𝑛𝑛+1) =  𝑤𝑤𝑖𝑖(𝑛𝑛) + ∆𝑤𝑤𝑖𝑖,𝑗𝑗(𝑛𝑛)  (15) 

 

Even a cursory comparison of (9) and (13) and (10-11), (14-15), respectively, clearly shows 

how both steps of the signal transfer process are guided by the same (contraction) principle, and 

likewise for the two weight adaptation steps (for which we could speak of an energy entrapment 

principle). Notice how the term 𝑚𝑚𝑗𝑗(𝑛𝑛)
[ℎ]   in (14) makes the change in the connection proportional to the 

quantity of energy liberated by node  𝑚𝑚𝑗𝑗(𝑛𝑛)
[ℎ]  in favour of node 𝑚𝑚𝑗𝑗(𝑛𝑛)

[𝑡𝑡]  . The whole learning process, 

which essentially consists of a progressive adjustment of the connections aimed at the global 

minimisation of energy, may be seen as a complex juxtaposition of phases of acceleration and 

𝑛𝑛

(9)

where C is a positive real number not lower than 1, which we will refer to 
as the contraction parameter, and where the (n) subscript has been omitted 
from the notation of the input layer units, as these remain constant at every 
cycle of processing. 

Fig. 1 – an example of an auto-CM with N = 4. 
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2) adaptation of the connections through the variation, which amounts to 
trapping the energy difference generated according to equation (9):

 
a) Signal transfer from the Input to the Hidden layer: 

 

𝑚𝑚𝑖𝑖(𝑛𝑛)
[ℎ] =  𝑚𝑚𝑖𝑖

[𝑠𝑠] ∙ (1 −  
𝑣𝑣𝑖𝑖(𝑛𝑛)

𝐶𝐶 ) (9) 

 
where C is a positive real number not lower than 1, which we will refer to as the contraction 
parameter, and where the (n) subscript has been omitted from the notation of the input layer units, as 
these remain constant at every cycle of processing.  

 
1) Adaptation of the connections through the variation ∆𝑣𝑣𝑖𝑖(𝑛𝑛) , which amounts to trapping the energy 
difference generated according to equation (9): 

 

∆𝑣𝑣𝑖𝑖(𝑛𝑛) =  (𝑚𝑚𝑖𝑖
[𝑠𝑠] − 𝑚𝑚𝑖𝑖(𝑛𝑛)

[ℎ] )  ∙ (1 − 
𝑣𝑣𝑖𝑖(𝑛𝑛)

𝐶𝐶 ) (10) 

 
𝑣𝑣𝑖𝑖(𝑛𝑛+1) =  𝑣𝑣𝑖𝑖(𝑛𝑛) +  ∆𝑣𝑣𝑖𝑖(𝑛𝑛) (11) 

 
2) Signal transfer from the Hidden to the Output layer: 

 

𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖(𝑛𝑛) =  ∑ 𝑚𝑚𝑗𝑗(𝑛𝑛)
[ℎ] ∙ (1 −  

𝑤𝑤𝑖𝑖,𝑗𝑗(𝑛𝑛)

𝐶𝐶 )
𝑁𝑁

𝑗𝑗=1
 (12) 

  

𝑚𝑚𝑖𝑖( )
[𝑡𝑡] =  𝑚𝑚𝑖𝑖(𝑛𝑛)

[ℎ] ∙ (1 −  
𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖(𝑛𝑛)

𝐶𝐶 ) (13) 

  
3) Adaptation of the connections  𝑤𝑤𝑖𝑖,𝑗𝑗(𝑛𝑛)through the variation ∆𝑤𝑤𝑖𝑖,𝑗𝑗(𝑛𝑛)  , which amounts, accordingly, 
to trapping the energy difference as to equation (13): 

 

∆𝑤𝑤𝑖𝑖,𝑗𝑗(𝑛𝑛)  =  (𝑚𝑚𝑖𝑖(𝑛𝑛)
[ℎ] − 𝑚𝑚𝑖𝑖(𝑛𝑛)

[𝑡𝑡] )  ∙ (1 −  
𝑤𝑤𝑖𝑖(𝑛𝑛)

𝐶𝐶 ) ∙ 𝑚𝑚𝑗𝑗(𝑛𝑛)
[ℎ]  (14) 

 
𝑤𝑤𝑖𝑖(𝑛𝑛+1) =  𝑤𝑤𝑖𝑖(𝑛𝑛) + ∆𝑤𝑤𝑖𝑖,𝑗𝑗(𝑛𝑛)  (15) 

 

Even a cursory comparison of (9) and (13) and (10-11), (14-15), respectively, clearly shows 

how both steps of the signal transfer process are guided by the same (contraction) principle, and 

likewise for the two weight adaptation steps (for which we could speak of an energy entrapment 

principle). Notice how the term 𝑚𝑚𝑗𝑗(𝑛𝑛)
[ℎ]   in (14) makes the change in the connection proportional to the 

quantity of energy liberated by node  𝑚𝑚𝑗𝑗(𝑛𝑛)
[ℎ]  in favour of node 𝑚𝑚𝑗𝑗(𝑛𝑛)

[𝑡𝑡]  . The whole learning process, 

which essentially consists of a progressive adjustment of the connections aimed at the global 

minimisation of energy, may be seen as a complex juxtaposition of phases of acceleration and 

𝑛𝑛

(10)

 
a) Signal transfer from the Input to the Hidden layer: 

 

𝑚𝑚𝑖𝑖(𝑛𝑛)
[ℎ] =  𝑚𝑚𝑖𝑖

[𝑠𝑠] ∙ (1 −  
𝑣𝑣𝑖𝑖(𝑛𝑛)

𝐶𝐶 ) (9) 

 
where C is a positive real number not lower than 1, which we will refer to as the contraction 
parameter, and where the (n) subscript has been omitted from the notation of the input layer units, as 
these remain constant at every cycle of processing.  

 
1) Adaptation of the connections through the variation ∆𝑣𝑣𝑖𝑖(𝑛𝑛) , which amounts to trapping the energy 
difference generated according to equation (9): 

 

∆𝑣𝑣𝑖𝑖(𝑛𝑛) =  (𝑚𝑚𝑖𝑖
[𝑠𝑠] − 𝑚𝑚𝑖𝑖(𝑛𝑛)

[ℎ] )  ∙ (1 − 
𝑣𝑣𝑖𝑖(𝑛𝑛)

𝐶𝐶 ) (10) 

 
𝑣𝑣𝑖𝑖(𝑛𝑛+1) =  𝑣𝑣𝑖𝑖(𝑛𝑛) +  ∆𝑣𝑣𝑖𝑖(𝑛𝑛) (11) 

 
2) Signal transfer from the Hidden to the Output layer: 

 

𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖(𝑛𝑛) =  ∑ 𝑚𝑚𝑗𝑗(𝑛𝑛)
[ℎ] ∙ (1 −  

𝑤𝑤𝑖𝑖,𝑗𝑗(𝑛𝑛)

𝐶𝐶 )
𝑁𝑁

𝑗𝑗=1
 (12) 

  

𝑚𝑚𝑖𝑖( )
[𝑡𝑡] =  𝑚𝑚𝑖𝑖(𝑛𝑛)

[ℎ] ∙ (1 −  
𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖(𝑛𝑛)

𝐶𝐶 ) (13) 

  
3) Adaptation of the connections  𝑤𝑤𝑖𝑖,𝑗𝑗(𝑛𝑛)through the variation ∆𝑤𝑤𝑖𝑖,𝑗𝑗(𝑛𝑛)  , which amounts, accordingly, 
to trapping the energy difference as to equation (13): 

 

∆𝑤𝑤𝑖𝑖,𝑗𝑗(𝑛𝑛)  =  (𝑚𝑚𝑖𝑖(𝑛𝑛)
[ℎ] − 𝑚𝑚𝑖𝑖(𝑛𝑛)

[𝑡𝑡] )  ∙ (1 −  
𝑤𝑤𝑖𝑖(𝑛𝑛)

𝐶𝐶 ) ∙ 𝑚𝑚𝑗𝑗(𝑛𝑛)
[ℎ]  (14) 

 
𝑤𝑤𝑖𝑖(𝑛𝑛+1) =  𝑤𝑤𝑖𝑖(𝑛𝑛) + ∆𝑤𝑤𝑖𝑖,𝑗𝑗(𝑛𝑛)  (15) 

 

Even a cursory comparison of (9) and (13) and (10-11), (14-15), respectively, clearly shows 

how both steps of the signal transfer process are guided by the same (contraction) principle, and 

likewise for the two weight adaptation steps (for which we could speak of an energy entrapment 

principle). Notice how the term 𝑚𝑚𝑗𝑗(𝑛𝑛)
[ℎ]   in (14) makes the change in the connection proportional to the 

quantity of energy liberated by node  𝑚𝑚𝑗𝑗(𝑛𝑛)
[ℎ]  in favour of node 𝑚𝑚𝑗𝑗(𝑛𝑛)

[𝑡𝑡]  . The whole learning process, 

which essentially consists of a progressive adjustment of the connections aimed at the global 

minimisation of energy, may be seen as a complex juxtaposition of phases of acceleration and 

𝑛𝑛

(11)

3) Signal transfer from the Hidden to the Output layer:

 
a) Signal transfer from the Input to the Hidden layer: 

 

𝑚𝑚𝑖𝑖(𝑛𝑛)
[ℎ] =  𝑚𝑚𝑖𝑖

[𝑠𝑠] ∙ (1 −  
𝑣𝑣𝑖𝑖(𝑛𝑛)

𝐶𝐶 ) (9) 

 
where C is a positive real number not lower than 1, which we will refer to as the contraction 
parameter, and where the (n) subscript has been omitted from the notation of the input layer units, as 
these remain constant at every cycle of processing.  

 
1) Adaptation of the connections through the variation ∆𝑣𝑣𝑖𝑖(𝑛𝑛) , which amounts to trapping the energy 
difference generated according to equation (9): 

 

∆𝑣𝑣𝑖𝑖(𝑛𝑛) =  (𝑚𝑚𝑖𝑖
[𝑠𝑠] − 𝑚𝑚𝑖𝑖(𝑛𝑛)

[ℎ] )  ∙ (1 − 
𝑣𝑣𝑖𝑖(𝑛𝑛)

𝐶𝐶 ) (10) 

 
𝑣𝑣𝑖𝑖(𝑛𝑛+1) =  𝑣𝑣𝑖𝑖(𝑛𝑛) +  ∆𝑣𝑣𝑖𝑖(𝑛𝑛) (11) 

 
2) Signal transfer from the Hidden to the Output layer: 

 

𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖(𝑛𝑛) =  ∑ 𝑚𝑚𝑗𝑗(𝑛𝑛)
[ℎ] ∙ (1 −  

𝑤𝑤𝑖𝑖,𝑗𝑗(𝑛𝑛)

𝐶𝐶 )
𝑁𝑁

𝑗𝑗=1
 (12) 

  

𝑚𝑚𝑖𝑖( )
[𝑡𝑡] =  𝑚𝑚𝑖𝑖(𝑛𝑛)

[ℎ] ∙ (1 −  
𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖(𝑛𝑛)

𝐶𝐶 ) (13) 

  
3) Adaptation of the connections  𝑤𝑤𝑖𝑖,𝑗𝑗(𝑛𝑛)through the variation ∆𝑤𝑤𝑖𝑖,𝑗𝑗(𝑛𝑛)  , which amounts, accordingly, 
to trapping the energy difference as to equation (13): 

 

∆𝑤𝑤𝑖𝑖,𝑗𝑗(𝑛𝑛)  =  (𝑚𝑚𝑖𝑖(𝑛𝑛)
[ℎ] − 𝑚𝑚𝑖𝑖(𝑛𝑛)

[𝑡𝑡] )  ∙ (1 −  
𝑤𝑤𝑖𝑖(𝑛𝑛)

𝐶𝐶 ) ∙ 𝑚𝑚𝑗𝑗(𝑛𝑛)
[ℎ]  (14) 

 
𝑤𝑤𝑖𝑖(𝑛𝑛+1) =  𝑤𝑤𝑖𝑖(𝑛𝑛) + ∆𝑤𝑤𝑖𝑖,𝑗𝑗(𝑛𝑛)  (15) 

 

Even a cursory comparison of (9) and (13) and (10-11), (14-15), respectively, clearly shows 

how both steps of the signal transfer process are guided by the same (contraction) principle, and 

likewise for the two weight adaptation steps (for which we could speak of an energy entrapment 

principle). Notice how the term 𝑚𝑚𝑗𝑗(𝑛𝑛)
[ℎ]   in (14) makes the change in the connection proportional to the 

quantity of energy liberated by node  𝑚𝑚𝑗𝑗(𝑛𝑛)
[ℎ]  in favour of node 𝑚𝑚𝑗𝑗(𝑛𝑛)

[𝑡𝑡]  . The whole learning process, 

which essentially consists of a progressive adjustment of the connections aimed at the global 

minimisation of energy, may be seen as a complex juxtaposition of phases of acceleration and 

𝑛𝑛
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a) Signal transfer from the Input to the Hidden layer: 
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[𝑠𝑠] ∙ (1 −  
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where C is a positive real number not lower than 1, which we will refer to as the contraction 
parameter, and where the (n) subscript has been omitted from the notation of the input layer units, as 
these remain constant at every cycle of processing.  

 
1) Adaptation of the connections through the variation ∆𝑣𝑣𝑖𝑖(𝑛𝑛) , which amounts to trapping the energy 
difference generated according to equation (9): 

 

∆𝑣𝑣𝑖𝑖(𝑛𝑛) =  (𝑚𝑚𝑖𝑖
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𝑣𝑣𝑖𝑖(𝑛𝑛+1) =  𝑣𝑣𝑖𝑖(𝑛𝑛) +  ∆𝑣𝑣𝑖𝑖(𝑛𝑛) (11) 

 
2) Signal transfer from the Hidden to the Output layer: 

 

𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖(𝑛𝑛) =  ∑ 𝑚𝑚𝑗𝑗(𝑛𝑛)
[ℎ] ∙ (1 −  

𝑤𝑤𝑖𝑖,𝑗𝑗(𝑛𝑛)

𝐶𝐶 )
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𝑗𝑗=1
 (12) 

  

𝑚𝑚𝑖𝑖( )
[𝑡𝑡] =  𝑚𝑚𝑖𝑖(𝑛𝑛)

[ℎ] ∙ (1 −  
𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖(𝑛𝑛)

𝐶𝐶 ) (13) 

  
3) Adaptation of the connections  𝑤𝑤𝑖𝑖,𝑗𝑗(𝑛𝑛)through the variation ∆𝑤𝑤𝑖𝑖,𝑗𝑗(𝑛𝑛)  , which amounts, accordingly, 
to trapping the energy difference as to equation (13): 
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[𝑡𝑡]  . The whole learning process, 

which essentially consists of a progressive adjustment of the connections aimed at the global 

minimisation of energy, may be seen as a complex juxtaposition of phases of acceleration and 
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Even a cursory comparison of (9) and (13) and (10-11), (14-15), re-
spectively, clearly shows how both steps of the signal transfer process are 
guided by the same (contraction) principle, and likewise for the two weight 
adaptation steps (for which we could speak of an energy entrapment princi-
ple). Notice how the term in (14) makes the change in the connection pro-
portional to the quantity of energy liberated by node in favour of node. The 
whole learning process, which essentially consists of a progressive adjustment 
of the connections aimed at the global minimisation of energy, may be seen 
as a complex juxtaposition of phases of acceleration and deceleration of ve-
locities of the learning signals (adaptations and) inside the aNN connection 
matrix (buscema, grossi 2007). There are a few important peculiarities of 
auto-CMs with respect to more familiar classes of aNNs that need special 
attention and call for careful reflection:

1) auto-CMs are able to learn also when starting from initialisations where 
all connections are set at the same value, i.e., they do not suffer the problem 
of the symmetric connections.
2) During the training process, auto-CMs always assign positive values to 
connections. In other words, auto-CMs do not allow for inhibitory relations 
among nodes, but only for different strengths of excitatory connections.
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3) auto-CMs can learn also in difficult conditions, namely, when the connec-
tions of the main diagonal of the second layer connection matrix are removed. 
In the context of this kind of learning process, auto-CMs seem to reconstruct 
the relationship occurring between each couple of variables. Consequently, 
from an experimental point of view, it seems that the ranking of its connec-
tions matrix translates into the ranking of the joint probability of occurrence 
of each couple of variables.
4) Once the learning process has occurred, any input vector, belonging to the 
training set, will generate a null output vector. So, the energy minimisation of 
the training vectors is represented by a function by means of which the trained 
connections “absorb” completely the input training vectors. Thus, auto-CM 
seems to learn how to transform itself in a “dark body”
5) at the end of the training phase the matrix w, then, represents the auto-
CM knowledge about the whole dataset.

For our purpose, the matrix w may be transformed into a non-Euclidean 
distance metric (semi-metric), when we train the auto-CM with the main 
diagonal of the w matrix fixed at value N. Now, if we consider N as a limit 
value for all the weights of the w matrix, we can write:

deceleration of velocities of the learning signals (adaptations  ∆𝑣𝑣𝑖𝑖(𝑛𝑛) and  ∆𝑤𝑤𝑖𝑖,𝑗𝑗(𝑛𝑛)) inside the ANN 
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function by means of which the trained connections “absorb” completely the input training vectors. 
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5) At the end of the training phase the matrix w, then, represents the AutoCM knowledge about the 
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(i.e., they represent the zero distance of each node from itself), and where the off-diagonal entries 

represent “distances” between each couple of nodes. Each distance between a pair of nodes may 

therefore be regarded as the weighted edge between these pair of nodes in a suitable graph-theoretic 

representation, so that the matrix d itself may be analysed through the graph theory. 

 

5. APPLICATIONS: GANG TOY DATASET 

(16)

The new matrix d is again a squared symmetric matrix, where the main 
diagonal entries are null (i.e., they represent the zero distance of each node 
from itself), and where the off-diagonal entries represent “distances” between 
each couple of nodes. Each distance between a pair of nodes may therefore 
be regarded as the weighted edge between these pair of nodes in a suitable 
graph-theoretic representation, so that the matrix d itself may be analysed 
through the graph theory.

5. applications: gang toy dataset

5.1 The dataset

In this section we propose a validation of the tools discussed. The vali-
dation is based on a well-known benchmark introduced by McClelland 
and Rumelhart (1986, 1988), the West side story dataset where one has to 
distinguish members’ affiliation in two rival gangs, the Jets and the Sharks, on 
the basis of certain numbers of identifying characteristics. This is a demand-
ing benchmark in that characteristics are mixed up in a rather tricky way: 
Jets tend to be in their 20s, single and with a Junior High School education, 
although no one Jet member actually happens to meet all three criteria at the 
same time, whereas Sharks tend to be older, married and with a High School 
education, but again no one Shark happens to meet the three criteria simulta-
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neously. Moreover, all members of both gangs are equally likely to operate as 
pushers, bookies or burglars. We will see how the tools discussed in previous 
sections could provide an in-depth exploration of the structural properties 
of the dataset, then very useful information for a number of further tasks, 
including, for instance, analysis of clusters, scenario simulation and so on.

The Tab. 2 shows this dataset. The basic statistics is reported in Tab. 3.

5.2 Preprocessing

Each categorical variable (gang, age, Education, Status and Profession) 
is transformed using dummy variables: each item is transformed in a boolean 
value, 1 or 0. This choice is particularly effective when the output is a graph 
or a neural network based on activations of nodes/entities. Tab. 4 shows the 
transformed dataset.

Gang Age Education Status Profession
ART Jet 40 Junior School Single Pusher
AL Jet 30 Junior School Married Burglar
SAM Jet 20 College Single Bookie
CLYDE Jet 40 Junior School Single Pusher
MIKE Jet 30 Junior School Single Pusher
JIM Jet 20 Junior School Divorced Burglar
GREG Jet 20 High School Married Pusher
JOHN Jet 20 Junior School Married Burglar
DOUG Jet 30 High School Single Bookie
LANCE Jet 20 Junior School Married Burglar
GEORGE Jet 20 Junior School Divorced Burglar
PETE Jet 20 High School Single Bookie
FRED Jet 20 High School Single Pusher
GENE Jet 20 College Single Pusher
RALPH Jet 30 Junior School Single Pusher

PHIL Sharks 30 College Married Pusher

IKE Sharks 30 Junior School Single Bookie
NICK Sharks 30 High School Single Pusher
DON Sharks 30 College Married Burglar
NED Sharks 30 College Married Bookie
KARL Sharks 40 High School Married Bookie
KEN Sharks 20 High School Single Burglar
EARL Sharks 40 High School Married Burglar
RICK Sharks 30 High School Divorced Burglar
OL Sharks 30 College Married Pusher
NEAL Sharks 30 High School Single Bookie
DAVE Sharks 30 High School Divorced Pusher

Tab. 2 – gang dataset.

Item Jets Sharks Jets(%) Sharks(%)
20s 9 1 60.00 8.33
30s 4 9 26.67 75.00
40s 2 2 13.33 16.67
Junior 
School 9 1 60.00 8.33

High School 4 17 26.67 58.33
College 2 4 13.33 33.33
Single 9 4 60.00 33.33
Married 4 6 26.67 50.00
Divorced 2 2 13.33 16.67
Pusher 5 4 33.33 33.33
Bookie 5 4 33.33 33.33
Burglar 5 4 33.33 33.33

Tab. 3 – gang dataset basic statistics.
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5.3 Minimum spanning Trees

In this section we show the MST outputs based on the auto-CM metrics. 
The auto-CM weights matrix was calculated by the research experimental 
software aRCHEOsEMa lab (see appendix a).

The MST output file is a *.graphml type file and was visualised with 
the open source software gEPHI v. 0.8.1. We propose two types of trees, each 
based on different input of the artificial neural network auto-CM:

1) variables Tree: input corresponding to the matrix of Tab. 4. Nodes repre-
sent variables.
2) Records Tree: the input is transposed matrix of Tab. 4. Nodes represent 
records. Our trees analysis is based on three specific statistics measures that 
maintain their meaning even MSTs are acyclic graphs:
3) Betweenness centrality. It is a centrality measure of a vertex within a 
graph and quantifies the number of times a node acts as a bridge along the 

Jet Sharks 20 30 40 JH COL HS Sing Marr Div Push Book Burg
ART 1 0 0 0 1 1 0 0 1 0 0 1 0 0
AL 1 0 0 1 0 1 0 0 0 1 0 0 0 1
SAM 1 0 1 0 0 0 1 0 1 0 0 0 1 0
CLYDE 1 0 0 0 1 1 0 0 1 0 0 0 1 0
MIKE 1 0 0 1 0 1 0 0 1 0 0 0 1 0
JIM 1 0 1 0 0 1 0 0 0 0 1 0 0 1
GREG 1 0 1 0 0 0 0 1 0 1 0 1 0 0
JOHN 1 0 1 0 0 1 0 0 0 1 0 0 0 1
DOUG 1 0 0 1 0 0 0 1 1 0 0 0 1 0
LANCE 1 0 1 0 0 1 0 0 0 1 0 0 0 1
GEORGE 1 0 1 0 0 1 0 0 0 0 1 0 0 1
PETE 1 0 1 0 0 0 0 1 1 0 0 0 1 0
FRED 1 0 1 0 0 0 0 1 1 0 0 1 0 0
GENE 1 0 1 0 0 0 1 0 1 0 0 1 0 0
RALPH 1 0 0 1 0 1 0 0 1 0 0 1 0 0
PHIL 0 1 0 1 0 0 1 0 0 1 0 1 0 0
IKE 0 1 0 1 0 1 0 0 1 0 0 0 1 0
NICK 0 1 0 1 0 0 0 1 1 0 0 1 0 0
DON 0 1 0 1 0 0 1 0 0 1 0 0 0 1
NED 0 1 0 1 0 0 1 0 0 1 0 0 1 0
KARL 0 1 0 0 1 0 0 1 0 1 0 0 1 0
KEN 0 1 1 0 0 0 0 1 1 0 0 0 0 1
EARL 0 1 0 0 1 0 0 1 0 1 0 0 0 1
RICK 0 1 0 1 0 0 0 1 0 0 1 0 0 1
OL 0 1 0 1 0 0 1 0 0 1 0 1 0 0
NEAL 0 1 0 1 0 0 0 1 1 0 0 0 1 0
DAVE 0 1 0 1 0 0 0 1 0 0 1 1 0 0

Tab. 4 – gang dataset preprocessed.
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shortest path between two other nodes. It was introduced as a measure for 
quantifying the control of a human on the communication between other 
humans in a social network by Linton Freeman. In his conception, vertices 
that have a high probability to occur on a randomly chosen shortest path 
between two randomly chosen vertices have a high betweenness (Freeman 
1977). betweenness centrality is a more useful measure of the load placed on 
the given node in the network as well as the node’s importance to the network 
than just connectivity. The latter is only a local effect while the former is more 
global to the network. In a weighted network the links connecting the nodes 
are no longer treated as binary interactions, but are weighted in proportion 
to their capacity, influence, frequency, etc., which adds another dimension of 
heterogeneity within the network beyond the topological effects.
4) Mean Weighted Degree of Nodes: the mean weight of connections per 
node on the graph.
5) Modularity. It is one measure of the structure of networks or graphs. It was 
designed to measure the strength of division of a network into clusters. Net-
works with high modularity have dense connections between the nodes within 
modules but sparse connections between nodes in different modules. Modularity 
is the fraction of the edges that fall within the given groups minus the expected 
such fraction if edges were distributed at random. The value of the modularity 
lies in the range [−1/2, 1). It is positive if the number of edges within groups 
exceeds the number expected on the basis of chance. For a given division of the 
network’s vertices into some modules, modularity reflects the concentration of 
nodes within modules compared with random distribution of links between all 
nodes regardless of modules. The resolution coefficient is the main parameter 
to be set: a value higher than 1.0 (default) provides a minor number of clusters 
and then bigger ones (Newman 2006, 2007; Reichardt, bornholdt 2006).

5.4 Variables MsT

Fig. 2 shows the variables Minimum Spanning Tree. values of con-
nections between nodes correspond to the values of auto-CM connections 
matrix and their thickness is proportional to the value of the connection. We 
can note the following:

1) the separation between the two classes, Jets and sharks, is clear; the con-
nections with the class nodes indicate to some extent the prototype of the 
classes themselves. If we compare the tree with data of Tab. 3, we can see 
that age is one of the attributes that most distinguishes the two classes: one 
Shark is a thirty year old subject with a probability of 70%, while a Jet is 
twenties with a probability of 60% (note the maximum value of connections 
in both cases). Similarly, it is more likely that a Shark subject attends the High 
School, as well as a Jet subject attends the Junior School. Furthermore, a Jet 
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Fig. 2 – gang variables MST.

Fig. 3 – gang variables MST: a) Resolution coefficient = 1; b) Resolution coefficient = 3.
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subject is likely to be Single, while the fact that a Shark subject is Married 
is less likely, as this can be inferred from the fact that the node Married is 
linked to the node Sharks in a different way compared to the link between 
Jet and Single: it is in fact also connected to other nodes and can be regarded 
as a “transition” attribute between two classes;
2) the value of the connection between nodes 40 and Married is very low. 
In fact in the dataset there are 40 year old subjects who are both Single and 
Married, so this feature is not discriminating. However, the position of node 
40 indicates that this attribute is typically a Sharks attribute. This idea could 
be deduced also from the distance, in terms of the sum of the linking connec-
tions values, of this node from two classes: 40-Sharks = 1,38, 40-Jet = 3.2;
3) the position of the node College points that this attribute is not discrimi-
nating as the attributes age and Education. However, the College-Married 
connection is typically Sharks.
4) the bookie attribute is typically Sharks, as a bookie is typically a Single 
and this attribute, as already mentioned, is typically Shark.
5) the attribute burglar is not discriminating. We find this feature in the tree, 
as a transition node between the two classes. From the dataset we can see 
that it is more likely that a burglar is Married and that Divorced is a burglar. 
In addition, the meaning of burglar node as transition attribute is confirmed 
by its distances from nodes of the classes: burglar-Jet = 1.86 while burglar-
Sharks = 1.78. 

From this first analysis, we can conclude that this Minimum Spanning Tree 
has not only shown in a compact manner and immediately some relationships 
that were already inherent in the dataset, but it also has proposed not immedi-
ately noticeable solutions, available only through data manipulations. If these 
manipulations pose no relevant problem when working with small dataset, this 
feature of the MST based on matrix of connections auto-CM becomes more 
relevant when working with dataset of more significant size. Fig. 3 shows gEPHI 
v. 0.8.1 clustering based on modularity resolution coefficient = 1 and modularity 
resolution coefficient = 3. Fig. 4 shows the nodes weighted degree statistics (the 
size of labels is proportional to the weighted degree values) and Tab. 5 reports 
nodes degree and weighted degree values ordered by weighted degree.

The modularity algorithm based on a resolution coefficient = 3 has de-
tected two clusters, while three clusters have been detected with coefficient = 
1. These results once again demonstrate not only the complexity of the dataset, 
but also the potentiality of the methodology applied. If the proposed solu-
tion with a resolution = 3 seems to identify the two classes and confirm our 
expectations in some way, the solution of the three clusters is definitely the 
most interesting. The clusters 3 and 1 are those with strong characterisation, 
while the central cluster 2 can be considered as a transition zone between the 
two classes’s, identifying those attributes whose classes membership is not 



Fig. 4 – gang variables MST (nodes weighted degree).

Fig. 5 – gang variables MST (betweenness centrality).
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so obvious. The weighted degree statistics confirms not only the importance 
of nodes Jets and Sharks, as cluster centers, but also the importance of node 
Married as attribute of transition from one class to another (Tabs. 5, 6).

5.5 Records MsT

Fig. 6 shows the MST of records. The labels contain, between paren-
theses, the membership class ID of records. Topological separation of the two 
classes is evident. The closely related records are very similar and may define 
additional groups within the main class. In Figs. 7a-b results are analysed in 
terms of the Modularity Statistics.

The separation of records in two classes is stably supported with values 
of the resolution from 8 to 4 (Fig. 7a). but even in this case it is much more 
interesting to analyse the results with lower resolution values which provide 
the finest hypothesis of possible sub-clusters. In particular, with resolution = 
3 (Fig. 7b) we get three clusters: the cluster of Shark remained substantially 
unchanged (except for the Ike node), while the Jets cluster is divided into two 
sub-cluster, with the cluster in blue as a cluster of transition between the two 
classes and nodes Ike and Mike as those records that contain, at this level of 
resolution, “ambiguous” attributes. With resolution = 2 (Fig. 7c) a change of 
membership of three Sharks subjects, Neal, Ken and Nick occurs: now they 
belong to a new cluster together four subjects of the cluster detected by reso-
lution = 3. This new cluster is separated into two sub-clusters with resolution 
= 1 (Fig. 7d): in this new configuration are 5 clusters. The dataset complexity 
is still confirmed.

Node Degree Weighted Degree
Married 4 3.02
Jet 3 2.96
Sharks 3 2.87
Burglar 3 2.41
Single 2 1.89
20 2 1.86
30 2 1.80
JH 1 0.99
HS 1 0.96
Bookie 1 0.92
Pusher 1 0.80
COL 1 0.77
Divorced 1 0.68
40 1 0.47

Tab. 5 – Nodes degree and weighted de-
gree values ordered by weighted degree.

Node Betweenness Centrality
Married 0.65
Burglar 0.60
20 0.46
Jet 0.41
Sharks 0.41
30 0.15
Single 0.15
40 0.00
JH 0.00
COL 0.00
HS 0.00
Divorced 0.00
Pusher 0.00
Bookie 0.00

Tab. 6 – Nodes centrality values 
ordered by centrality.
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Fig. 6 – gang records MST.

From comparison of these results we could detect two basic clusters:

1) the cluster composed of Karl, Earl, Rick, Daves, Don, Phil, Ned and Ol: 
we can assume that it is in the cluster that defines the differentiating charac-
teristics of Sharks subjects;
2) the cluster composed of Doug, Pete, Sam, gene, Fred and greg: we can 
assume that it is in the cluster that defines the differentiating characteristics 
of Jets subjects.

Fig. 8 shows the graph of betweenness Centrality statistics (the size of 
nodes and labels is proportional to the value of betweennes). Tab. 7 lists the 
values for each node in a descending order.

Fig. 9 shows the graph of Weighted Degree statistics (the size of nodes 
and of labels is proportional to the value of the degree). Tab. 8 lists the values 
for each node in a descending order.
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Id Betweenness Centrality
MIKE(J) 0.716923077
NEAL(S) 0.52
IKE(S) 0.507692308
NICK(S) 0.443076923
DAVE(S) 0.409230769
RICK(S) 0.393846154
DOUG(J) 0.323076923
AL(J) 0.270769231
PETE(J) 0.270769231
FRED(J) 0.218461538
JOHN(J) 0.218461538
DON(S) 0.212307692
PHIL(S) 0.150769231
GENE(J) 0.076923077
JIM(J) 0.076923077
RALPH(J) 0.076923077
EARL(S) 0.076923077
SAM(J) 0
GREG(J) 0
LANCE(J) 0
GEORGE(J) 0
KEN(S) 0
ART(J) 0
CLYDE(J) 0
NED(S) 0
KARL(S) 0
OL(S) 0

Tab. 7 – Nodes centrality values 
ordered by centrality.

Id Weighted Degree
MIKE(J) 4.900000036
FRED(J) 2.960000038
JOHN(J) 2.960000038
PHIL(S) 2.960000038
NEAL(S) 2.920000017
RICK(S) 2.879999995
NICK(S) 1.970000029
DOUG(J) 1.970000029
PETE(J) 1.970000029
GENE(J) 1.970000029
JIM(J) 1.970000029
RALPH(J) 1.970000029
IKE(S) 1.960000038
DAVE(S) 1.960000038
AL(J) 1.939999998
DON(S) 1.930000007
EARL(S) 1.930000007
LANCE(J) 1
OL(S) 1
SAM(J) 0.99000001
GREG(J) 0.99000001
GEORGE(J) 0.99000001
ART(J) 0.980000019
CLYDE(J) 0.980000019
NED(S) 0.980000019
KARL(S) 0.980000019
KEN(S) 0.949999988

Tab. 8 – Nodes centrality values 
ordered by weighted degree.

From these analyses it is possible to conclude that the node Mike, first 
in both statistics, is a very significant node in the tree: Mike is central but is 
also the node whose the sum of links values to other nodes is the highest, and 
then we can assign the role of transitional element between the two classes 
(as the node whose distance from others is the lowest ever).

6. Conclusions

In this chapter we have proposed a data mining technique aiming to 
explore data in search of consistent patterns, systematic relationships and hid-
den associations between dataset entities (variables or records). This technique 
is based on unsupervised artificial neural network and provides a graph data 
mining methodology: a new paradigm of entities mapping aiming to create 
a sort of semantic connectivity map in which: 
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Fig. 7 – gang records MST (modularity statistics).

1) non-linear associations are preserved;
2) there are explicit connection schemes;
3) the complex dynamics of adaptive interactions is captured.

The weights matrix of the artificial neural network auto-CM represents 
the warped landscape of the whole dataset. The MST represents at this point 
a simple filter to apply to the weights matrix of auto-CM system to show 
visually the map of the main connections of the entities of the dataset and 
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Fig. 8 – gang records MST (betweenness Centrality statistics).

the basic semantic of their similarities. Data processing of aRCHEOSEMa 
project datasets, introduced in subsequent chapters of this volume, highlights 
the potentiality of this methodology also in research fields considerered as 
traditionally humanistic, for the definition of procedures of construction and 
validation of an interpretative model, the evaluation of its performance, its 
use as a valuable tool to support the exploration of alternative hypotheses 
and scenarios, especially in the case where hypothesis or an interpretative 
model cannot be directly inferred from data. 

For this purpose, alongside non-supervised neural networks here used, 
supervised neural networks could be used in order to build models of analysis 
and classification. In supervised training, both the inputs and the outputs are 
provided. The network then processes the inputs and compares its resulting 
outputs against the desired outputs. Errors are then propagated back through 
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Fig. 9 – gang records MST (weighted degree statistics).

the system, causing the system to adjust the weights which control the network. 
This process occurs over and over as the weights are continually tweaked. 
The set of data which enables the training is called the “training set”. Dur-
ing the training of a network the same set of data is processed many times as 
the connection weights are ever refined. Examples of classic and important 
research problems that can be addressed with this networks are problems of 
classification/assignment 1 of n, as long as it is possible to conceptualise and 
define formally an input dataset, target variables, procedures of data preproc-
essing and a protocol of validation of the model performance.

It is important however to emphasise that the methodology proposed 
is not in competition with more traditional data mining techniques, it is 
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neither an absolute alternative, nor a substitute for the expert knowledge. 
Researchers should use it as a tool to support their activities and assess 
the potentiality, even in the context of an interdisciplinary cooperation 
as increasingly and indispensable prerequisite within the framework of 
scientific activities starting from the very first stages of data collection, of 
formalisation of the reference database, of optimisation of stored data access 
procedures until the formulation of a research problem, the choice of one or 
more analytical models among those available, procedures for extracting a 
dataset to represent adequately the problem and to satisfy the requirements 
of the model. From a strictly epistemological point of view, the validation 
of the results of research methodologies proposed here will have to meet 
some basic criteria:

1) In case the results reproduce only what is already known in the literature, 
the model should be assessed in terms of implementation effectiveness and 
usability immediacy. If the alternative is a method that involves the applica-
tion of different procedures of filtered data extraction or different statistical 
procedures that produce complex reports, then the model proposed here 
retains a significant advantage.
2) In a initial phase the proposed model cannot completely refute the guide-
lines of the research community, but necessarily it will contains elements of 
continuity. The model may suggest, to the extent established by the expert, 
alternative hypotheses that “explain” the phenomenon under investigation 
although they are based upon assumptions at the moment unfounded and/or 
in contradiction to what is supported by the scientific community. 
3) Consequences in principle “observable” and “controllable” should be 
deduced from alternative hypotheses. an hypothesis should suggest some 
requirements or contraints, strictly experimental or not, for a “predicted” 
phenomenon by the model to occur or not. Controllability does not mean 
verifiability: the control procedures may also result in a refutation of the 
hypothesis as crucial procedure of importance equal to that of a verified 
hypothesis.
4) If we use different procedures in order to control a hypothesis, it should be 
necessary to evaluate the degree of convergence of the results. although total 
convergence is rarely achievable, comparing the procedure can result in greater 
awareness of the nature and importance of each procedure parameters and the 
need to define the problem in a more appropriate way. There is no single and 
incontrovertible model that returns a unique solution to a problem. On the 
other hand, there is a research activity that has to deal with the development 
of different methodologies, to assess its ability to contribute to the develop-
ment of a discipline through the reformulation of classical problems from a 
most promising perspective and, in the same time, through the formulation 
of new and unexpected research problems.
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appendix aRCHEOSEMa Lab software

all elaborations reported were performed with the research software aRCHEOSEMa 
Lab v 1.0, written in C ++ for Windows. The software has the following functions:
1) Calculation of connections matrices for the metrics Linear Correlation, Prior Probability e 
auto Contractive Map artificial Neural Network;
2) Definition of the Minimum Spanning Tree for each metric;
3) Minimum Spanning Tree output files in a graphml format for the visualisation and mani-
pulation through the open source software gEPHI v. 0.8.1.

a further phase of development involves the implementation of the unsupervised neu-
ral network Self Organising Map (Kohonen 2001) and the supervised neural network back 
Propagation (McClelland, Rumelhart et al. 1986; Werbos 1994).

Massimiliano Capriotti
Semeion Research Center

Laa&aaS
Sapienza Università di Roma
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abSTRaCT

In this paper the theoretical and methodological aspects of some of the tools applied 
to the archaeological, geographical and linguistic problems posed by aRCHEOSEMa project 
will be analysed. In particular, the single steps of the process of generation of outputs, from 
the initial analysis of the dataset, the subsequent procedures of pre-processing and encoding of 
the data to the characteristics of the processing algorithms will be described. For this purpose 
we will use a so-called toy dataset known in the literature. Using the same dataset, we will 
illustrate the main output produced, Minimum Spanning Tree maps. along with the use of 
classical literature measurements, such as the Pearson linear correlation and Prior Probability, 
both used as metrics for the generation of these outputs, we have tried to show the innovative 
contribution of a new artificial neural network, the auto-Contractive Map, designed by P.M. 
buscema at the Semeion Research Center.


