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ARTIFICIAL NEURAL NETWORKS AND COMPLEXITY:  
AN OVERVIEW

1. Introduction: complex systems and connectionism

Understanding the world around us is usually a difficult task. All dy-
namically evolving phenomena in the natural world are produced by a strong 
interaction among a great number of causes of which only few are visible or 
measurable. Moreover, the phenomena, like the weather evolution, may be 
so distributed over the space or time that only a small number of measure-
ments can be done, making the understanding of the overall system difficult 
and approximated. In general, some characteristics of systems can produce a 
very strange behaviour, even when the elements constituting the system are 
a small number. All these elements and their mutual interaction can produce 
the so-called complexity.

In order to understand the approach a researcher may use in analysing 
a system, a very simple metaphor may be adopted: the iceberg. An iceberg is 
a floating ice mountain in the sea that shows only a small visible part above 
the waterline. If some specific tools are not used to improve our investiga-
tion of the iceberg, all we can describe is the movement of its visible part, the 
rate of melting, the colour, the transparency, and the like. Any other aspect 
that belongs to the submerged part is excluded from a direct measurement. 
Therefore, any hypothesis about the global behaviour of the iceberg can be 
proved by using only what we are allowed to see directly. Is all this incomplete 
amount of accessible information enough to fully describe the iceberg and 
its future evolution? This is a very difficult question to answer. All we could 
say is that the visible behaviour, in some sense, contains also the occulted 
information and everything that is out of our sight can be extracted from 
what is known. Even when no theories or hypotheses are allowable to create 
a reference framework, complex systems have the characteristic to show an 
evolution through the mixed actions or interactions of the variables.

In observing natural, social, economical, physical, biological systems, 
we basically deal with measured data that give us a partial knowledge of 
the “visible part” of the system. Therefore, data is required to re-build a 
mathematical or algorithmic framework that could be sufficiently detailed 
and powerful to describe the fundamental aspects of the system under study, 
its evolution over time, and its meaningful characteristics. A system is an or-
ganised, purposeful structure that consists of interrelated and interdependent 
elements (components, entities, factors, members, parts, etc.). These elements 
continually influence one another (directly or indirectly) to maintain their 
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activity and the existence of the system in order to achieve the goal of the 
system. Although all systems have outputs, which are considered as observable 
variables that make possible the measurement of what the system is doing at 
a given time, they may also:

1) have inputs and feedback mechanisms;
2) maintain an internal steady-state (called homeostasis) despite a changing 
external environment;
3) display properties that are different than the whole (called emergent prop-
erties) but are not possessed by any of the individual elements; 
4) have boundaries that are usually defined by the system observer.

Systems underlie every phenomenon and all are part of a larger system. 
Together, they allow understanding and interpretation of the universe as a 
meta-system of interlinked wholes and organise our thoughts about the world. 
If a system has no input variables, it is called autonomous; otherwise, if input 
variables can modify the outcomes of the system, it is called non-autonomous. 
Although different types of systems (from a single cell to the human body, 
from soap bubbles to galaxies, from ant colonies to nations) look very differ-
ent on the surface, they have remarkable similarities. At the most basic level, 
systems are divided into two categories:

1) Closed systems: theoretical systems that do not interact with the environ-
ment and are not influenced by their surroundings. Only the components 
within the system are significant. Example: a sealed jar, nothing enters or 
exits the jar, but whatever is inside can interact.
2) Open systems: real-world systems the boundaries of which allow exchanges 
of energy, material, and information with the larger external environment 
or system in which they exist. Example: a company where, even if there are 
separate departments in one organisation, the workers share data and interact 
with each other on a daily basis.

Some other differences among systems can be found in terms of deter-
minism. Before addressing this aspect in the world of systems, it is necessary 
to define the system state. In a system, the state describes the minimum set of 
inner variables that are able to uniquely describe any part of the system. When 
a system returns to a specific state or situation, which it already visited in the 
past, no differences can be found between the two situations. Therefore, two 
identical systems with the same state cannot be distinguished. Of course, not 
all the systems have inner states. If a system has no inner states, it is called a 
0-order system, and the outputs depend only on the input values. Otherwise, 
the presence of inner states in some way gives the system a sort of memory of 
the past: what happens now depends on the inputs and also on what the system 
did previously. These kinds of systems are called N-order systems, where N 
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is, in some sense, the amount of memory the system beholds. Since a system’s 
evolution over time depends on the inputs and on the past, the future outcomes 
of the system should also be determined by these two elements. In deterministic 
systems, the past and the future evolution over time are determined uniquely 
for a specific input. This means that if the inner state of a system is known and 
the input sequence in time is given, every future evolution of the system will 
be known and defined. From the mathematical point of view, a differential 
equation form represents a continuous time-deterministic system:
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F (or G in discrete time domain) is the operator linking the rate of variation of 
the system variables to the present state, and it can be either linear or non-linear. 

In general, the evolution in time of linear differential equations is 
completely determined and can be calculated by means of well-established 
mathematical techniques. Conversely, non-linear differential equations do not 
have a general solution mechanism and in most cases do not admit analytical 
solutions. Anyway, several mathematical and geometrical techniques were 
developed to define the long-term evolution of this kind of equations and to 
outline the global behaviour of the differential dynamical system. Autonomous 
differential systems have steady states if there exists some combination of x 
variables where F(x)=0. In these points, also called fixed points, the variation 
of x is null and the system will keep this steady state until some perturbation 
is applied from the external environment (input). The stability of the fixed 
points is described by the dynamical behaviour of the surrounding space. The 
local space can be studied by a linearization of the dynamic system, and the 
general behaviour of the system around the fixed point can be evaluated by 
means of the main directions of convergence or divergence (eigenvectors) and 
their associated eigenvalues (Robinson 2004).

Linear differential equations, as dynamic outcomes, can produce only 
fixed stable or unstable points and oscillations instead of more complex 
geometric objects (both in two or higher dimensions). Conversely, non-linear 
differential systems can show a greater amount of time evolutions, some of 
which are definitely more strange and difficult to deal with. In three or more 
dimensions, all previous cases can appear but additional behaviours may be 
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added to the geometric taxonomy of attractors (Guckenheimer, Holmes 
1983; Khalil 2001; Jordan, Smith 2007). An attractor is a set of points 
in the phase space where all trajectories starting in a sufficiently close state 
will converge. The set of all points fulfilling this request is called basin of 
attraction. Therefore, the attractive fixed points and orbits shown in two-
dimensional examples are attractors. As mentioned in the previous part, since 
the dynamic evolution is considered deterministic, two different trajectories 
cannot intersect each other to preserve the uniqueness of the future system 
evolution. Starting with this consideration, one may ask what kind of new 
attractors may emerge from a high-dimensional non-linear system. Around 
1970, physicists and computer scientists encountered a special kind of attrac-
tors that, even if they were describing a deterministic system, they could not 
forecast the long-term evolution (or limit behaviour) unless considering a new 
geometrical object called fractal. This kind of time evolution of a system was 
named chaos. Some examples of chaotic attractors are the Duffing oscillator, 
the Lorenz system, or the Chua’s circuit.

A chaotic attractor shows a geometrical form similar to a ball of thread. 
Trajectories pass very close to each other but they never intersect, preserv-
ing the deterministic nature of the system. It can be proved that trajectories, 
belonging to the chaotic attractor, do not fill the space in which they are 
embedded in a uniform way. In previous cases, an attractive fixed point has 
a dimension equal to zero, an orbit has a dimension equal to one (length), 
surfaces are two-dimensional, volumes three-dimensional, and so on. Chaotic 
attractors have a non-integer dimensionality, since they do not fill the space 
uniformly and densely. For instance, the Lorenz attractor has a geometrical 
Hausdorff dimension equal to 2.06 (Falconer 1985). It means that the tra-
jectory fills the space more than a 2-dimensional surface, but the density of 
points is not sufficient to fill the space as a dense volume. This is the reason 
why these attractors are called strange or fractal.

Another feature characterising the strange attractors is the local divergence 
of close trajectories. Because of the geometrical aspects of this kind of strange 
objects, two close initial states are expected to move away from each other with 
an exponential law of divergence. The rate of local divergence is measured by 
the so-called Lyapunov exponent (Barreira, Pesin 2007). Therefore, even if 
the chaotic attractor geometrically describes the global behaviour of the system 
and the trajectory remains in that part of the space, when the system explores 
a state, which is close to another one visited in past, its evolution is expected to 
be very different after some time. The effect of diverging trajectories is called, 
by using a metaphor, the Butterfly Effect. This effect explains the dependence of 
the system evolution on small indetermination of the initial state. As a matter of 
fact, the calculation of a dynamic system time course requires infinite precision 
in the knowledge of the initial state. If either a small perturbation or simply a 
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rounding operation were applied to the initial state, the future evolution of the 
trajectory would be expected to diverge from the predicted one.

Therefore, the Butterfly Effect describes the fundamental importance 
of small perturbations in the knowledge of the initial states. The name of the 
effect, coined by Edward Lorenz, is derived from the theoretical example of a 
hurricane’s formation being contingent on whether or not a distant butterfly 
had flapped its wings several weeks before (Lorenz 1996). Finally, another 
feature characterising the chaotic attractors is that a chaotic evolution is neither 
periodic nor quasi-periodic (i.e., sum of several periodic evolutions the frequen-
cies of which have irrational ratio). Therefore, chaotic evolutions are hardly 
distinguishable from random evolutions, and the time series coming from chaotic 
systems may be misinterpreted as unpredictable noise. The power spectrum of 
chaotic signals reveals continuous dense zones, similarly to noisy and weakly 
self-correlated systems. According to the existing literature, non-linear dynamic 
systems are deterministic but manifest their time evolution in a way that is 
very difficult to describe, analyse, and predict. Long-term prediction is to be 
fully excluded, even if the deterministic machine gives the possibility to extract 
some useful and interesting parameters to identify the systems (Ruelle 1989).

Complexity can therefore be summarised by mixing the following factors: 
high number of dimensions (or descriptive variables), non-linearity in descrip-
tion of differential equation systems, some noise, which may come naturally 
from environment, from exclusion of any marginal aspect of the system descrip-
tion, or from measurement errors. Complex systems are therefore characterised 
by strange, non-periodic, unpredictable time evolution, strong inter-relation 
among variables, sensitivity to initial condition, and difficult discrimination 
by noisy non-deterministic phenomena. One may ask the reason why it is so 
interesting to define, identify, analyse and understand complex systems.

The answer lies in the fact that most natural systems are ruled by non-
linear differential equations. When these systems are non-autonomous and 
admit inputs from external stimuli, a very complex evolution may be difficult 
to define: the amount of chaos may change over time and the understanding 
of these phenomena becomes difficult. The traditional tools as statistics or 
classical mathematical approaches can fail to give sufficient information about 
the nature of what was observed. It has been proved that weather prediction 
(Lorenz 1963), socio-politic systems (Campbell, Mayer-Kress 1991; Pere 
et al. 2006), economic markets (Guégan 2009), stocks (Levy 1994), currency 
markets (Chorafas 1994), biological and ecological natural systems (Stone, 
Ezrati 1996), among others, are ruled by chaotic equations that, even with 
a small set of variables, can show complex and unpredictable evolution.

Complex systems represent a new approach, which studies how rela-
tionships between parts give rise to the collective behaviours of a system and 
how the system interacts and forms relationships with its environment. The 
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equations from which complex system models are developed generally derived 
from statistical physics, information theory, and non-linear dynamics, and 
represent organised but unpredictable behaviours of systems of nature that 
are considered fundamentally complex. The physical manifestations of such 
systems cannot be defined; thus, the usual choice is to refer to “the system” 
as the mathematical information model without referring to the undefined 
physical subject that the model represents. The key problems of complex 
systems are difficulties with their formal modelling and simulation. From 
such a perspective, in different research contexts, complex systems are de-
fined based on their different attributes. Since all complex systems have many 
interconnected components, the science of networks and network theory are 
important aspects of the study of complex systems. A consensus regarding a 
single universal definition of complex system does not yet exist.

For systems that are less usefully represented with equations, various 
kinds of narratives and methods are used to identify, explore, design and 
interact with complex systems. Some definitions of complexity focus on the 
question of the probability of encountering a given condition of a system 
once characteristics of the system are specified. The complexity of a particular 
system is the degree of difficulty in predicting the properties of the system, 
given the properties of the system’s parts (Weaver 1948). In Weaver’s view, 
complexity comes in two forms: disorganised complexity and organised com-
plexity. Disorganised complexity results from the particular system having a 
very large number of parts, say millions of parts, or many more.

Although the interactions of the parts in a disorganised complexity situ-
ation can be seen as largely random, the properties of the system as a whole 
can be understood by using probability and statistical methods. Organised 
complexity, on the other hand, resides in nothing else than the non-random, 
or correlated, interaction between the parts. These correlated relationships 
create a differentiated structure that can, as a system, interact with other 
systems. The coordinated system manifests properties not carried or dictated 
by individual parts. The organised aspect of this form of complexity can be 
said to “emerge” without any “guiding hand”. The number of parts does not 
have to be very large for a particular system to have emergent properties. The 
properties of a system of organised complexity may be understood through 
modelling and simulation conducted particularly with computers.

A very important aspect of complexity can be found in the field of con-
nectionism. Connectionism comprises a set of approaches in artificial cognition 
modelling that models mental or behavioural phenomena as emergent processes 
of interconnected networks of simple units. The key word linking complexity 
and connectionism is “emergence” because the strange and complex phe-
nomena that may arise from non-linear world are, in some sense, unexpected 
from the point of view of classical system analysis. For instance, the complex 
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behaviour emerged in Lorenz model of weather was so unexpected that the 
author himself was convinced that it was an error in the implementation of 
the algorithm. The non-linear relationships between weather single elements 
and between the neural cells in the brain have in common the possibility of 
the emergence of unexpected and extremely interesting behaviour. The in-
teresting part of complexity in brain structures is well known, as it involves 
the emergence of efficient approaches to solve difficult tasks that traditional 
algorithmic techniques fail to describe even the simplest cases. In the last years, 
several problems have been addressed using techniques inspired by natural 
connectionism: face recognition (Le 2011), language recognition (Cole 1989), 
automatic robot guidance (Gowdy et al. 1991), pattern recognition (Ripley 
1996), economic prediction (White 1988), and many others.

Another aspect of connectionism related to complexity is the network 
of interconnected simple units. Any interconnected structure of dialoguing 
elements that influence the future is related to the behaviour of some set of 
neighbour elements of the same kind and is likely to show complex behaviour 
in its time evolution. Once again, such a complex behaviour is given either by 
the eventual non-linear relationships among elements, by their inner non-linear 
dynamics, or by the great amount of elements synchronically evolving in time. 

In brain, for example, the complex dynamics can be measured in several 
cognitive states but, at the same time, some sort of cooperative coherence can 
be relevant depending on the task that the specific cortex area is performing. 
Different kind of coherence and different kind of chaotic evolution can relate 
to different kind of cognitive states and perceptions. According to what previ-
ously described, complexity is an attribute of connectionist systems. Therefore, 
simple non-linear processing units connected to each other according to some 
defined rule can be considered as the fundamental elements for building a 
complex system the behaviour of which may reflect the complexity of a target 
system under investigation (Sporns et al. 2000).

2. Neurons and synaptic connections

The simple units that comprise a neural network are called artificial 
neurons, whose behaviour is based on the biological neurons by means of the 
functions performed by the latter operating in their natural environment. What 
we know about biological neurons is due, among the others, to the pioneering 
work of Ramón y Cajál (1911) who introduced the idea of neurons as structural 
constituents of the brain. Typically, neurons are rather slower than silicon logic 
gates, but the brain compensates the relatively slow rate of operation of a neuron 
by having a truly staggering number of neurons with massive interconnections 
between them. It is estimated that there are approximately 10 billion neurons 
in the human cortex and 60 trillion synapses or connections. 
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The result is that the brain is an enormously efficient structure. Synapses 
are elementary structural and functional units that mediate the interactions 
between neurons. The most common kind of synapse is the chemical synapse. 
When a presynaptic process liberates a transmitter substance (neurotransmit-
ter), it diffuses across the synaptic junction between neurons and then acts on 
a postsynaptic process. Therefore, a synapse converts a presynaptic electrical 
signal into a chemical signal and then back into a postsynaptic electrical signal. 
In terms of physics language, a synapse operates as a one-directional gate in 
which information or signals may flow in only one direction. A synapse can 
have excitatory or inhibitory function on the receptive neuron but not both.

The modification of synaptic configuration is called plasticity in neuro-
biology. Plasticity permits the developing nervous system to adapt to its sur-
rounding environment. In an adult brain, plasticity can operate by means of 
two mechanisms: the creation of new synaptic connections between neurons 
and the modification of existing synapses. The former part will be implemented 
in the phase of building the structure of an ANN while the second part will 
be used in the training phase of a neural system. Bioelectrical signals reach 
the synaptic zones, flowing into a special transmission line called axon. Axon 
is the unique output of a neuron, and the signal flowing into it is supported 
without leakage by the axonal transmitting system until it reaches the syn-
aptic terminals. As mentioned before, a given amount of neurotransmitters is 
released and by diffusion, the neurotransmitter molecules reach the receptive 
sites of the postsynaptic neurons in specific neural structures called dendrites. 
The basic mechanisms underlying the functioning of a neuron can be sum-
marised as follows:

1) The external stimuli reach the neuron inputs by means of the synaptic 
transmission. The efficiency and the nature of every synaptic site determine 
the amplitude of the signal read by the neuron cell.
2) All the inputs are integrated to define the internal membrane potential.
3) If the membrane potential is greater than a reference threshold potential, 
an action potential is generated as a sequence of spikes that is transmitted 
along the axon (output channel).
4) The action potential reaches the terminations where the phenomenon of 
neurotransmitters diffusion is repeated and the synaptic sites of the post-
synaptic neurons can again read the neuronal stimulus at their inputs.

Here, we identify three basic elements of the neuronal model:

1) A set of synapses, or connecting links, each of which is characterised by a 
weight or connection strength. Specifically, a signal xj at the input of synapse 
j connected to neuron k is multiplied by the weight wkj. The first subscript 
refers to the neuron in question and the second subscript refers to the input 
end of the synapse to which the weight refers. Unlike a synapse in the brain, 
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the synapse weight of an artificial neuron may lie in a range that includes 
negative as well as positive values. 
2) An adder (S) for summing (or integrating) the input signals weighted by the 
respective synapses of the neuron. The operation described here constitutes 
a linear combiner. 
3) An activation function (j) for limiting the amplitude of the output of a 
neuron. The activation function is also referred to as a squashing function, 
since it squashes (limits) the permissible amplitude range of the output signal 
to some finite value. Typically, the normalised amplitude range of the output 
of a neuron is written as the closed interval [0,1] or alternatively [-1,1].

As stated in Amit (1992), some unexpected perturbations may influence 
the output of a neuron. Basically, several sources of incoherent mechanisms 
may be identified in the field of biological processes of neurons. These per-
turbations may be due to small fluctuations of neurotransmitter densities 
in synaptic vesicles, by the quantised aspect of neurotransmitter molecules, 
and by unpredictable fluctuations of biological elements, as for instance 
hormones, in the area where the neuron is functioning. The total influence 
of these unpredictable causes of noise follows a Gaussian statistical distri-
bution. Since the amount of activity of a neuron is given by the frequency 
of spiking pulses, we can say that the number of spikes in the unit of time 
is proportional to the probability of activation. A spike is transmitted if the 
activation potential is greater than the threshold; therefore, the activity of 
a neuron can be formulated in terms of probability depending on the local 
field. The mathematical relation linking the activation probability and the 
local field defines a characteristic function, widely used in ANNs, usually 
called sigmoid or logistic function.

3. ANNs: structure and training

In 1952, Frank Rosenblatt, a psychologist and researcher at the Cornell 
University, invented an algorithm to perform a simple learning by an artificial 
neural network (Rosenblatt 1958). Since Rosenblatt attempted to model 
a sensory system of the brain, this typology of neural network was called 
Perceptron. The basic idea was that human beings learn to enter information 
and concepts by using common senses (mainly sight and hearing) and store 
the information in some kind of memory, such that when specific information 
is recalled, it has to be equal to the original one. If the recalled information 
were learnt incorrectly, it would be necessary to learn such information again 
so that the new recall operation would have a higher probability to be correct 
compared to before. This approach can be repeated until all input informa-
tion is correctly stored and classified, if possible. A neural network that is 
able to process such information should have a suitable number of inputs for 
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reading the proposed information and an appropriate number of outputs for 
describing the class to which it belongs.

A crucial aspect of connectionist models is their ability to learn by experi-
ence. Even in the case of Perceptron, Rosenblatt (1958) proposed an algorithm 
named Delta Rule to define the suitable set of synaptic weights and biases for 
correctly classifying a set of input-output relations. If the response of an output 
unit is incorrect, the network can change to produce the correct response the 
next time that the stimulus is presented. The activity of a neuron is determined 
by the sum of inputs leading to it and each input is given by the product of 
the activity of a presynaptic unit multiplied by the weight of the connection 
between them. This means that any change in connection weights will change 
the activity level of units in the next layer. Thus, an output unit with activity 
that is too low can be corrected by increasing the weights of connections from 
units in the previous layer that provide a positive input to it and by decreasing 
the weights of connections that provide a negative input. Output units with an 
activity that is too high can be corrected by the opposite procedure.

The fundamental aspect of the Delta Rule is that, in the case of binary 
units, it cannot be applied to multilayer networks. In a multilayer network, 
desired output of hidden units is unknown information since we want to train 
the network based on the final output values, which are the values of the last 
layer outputs. Therefore, Delta Rule can be applied only to a single layer 
Perceptron for linearly separable tasks. Novikoff (1962) proved that the 
perceptron Delta Rule algorithm converges after a finite number of iterations 
if the dataset is linearly separable. A more general approach can be pursued by 
considering the relationship between the overall errors of the network related 
to the patterns presented at the input. When all P patterns are presented to 
the network, the overall error can be calculated as:
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to achieve a better comprehension of the pattern by the network, a positive 
increment of the weight should be associated with a negative error variation, 
that is, a decrease in the error. In mathematical terms:

Alessandro Londei   (Archeologia e Calcolatori Special Issue in Honour of David L. Clarke Rome 13.01.14) 
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until one complete presentation of the entire training set has been dealt with. 
The weights are adjusted in accordance with the respective errors computed 
for each pattern presented to the network. The Back-Propagation algorithm 
is used to determine the value of the local gradients of a neuron of a specific 
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j 𝑦𝑦𝑖𝑖). 

 

Second, the local gradient 𝛿𝛿𝑗𝑗 depends on whether neuron j is an output node or a hidden node: 

 
1) If neuron j is an output node, 𝛿𝛿𝑗𝑗 equals the product of the derivative 𝐹𝐹′(𝑣𝑣𝑗𝑗) of the sigmoid function 
defined in its state, and the error signal 𝑒𝑒𝑗𝑗, both of which are associated with neuron j. 
2) If neuron j is a hidden node, 𝛿𝛿𝑗𝑗 equals the product of the associated derivative 𝐹𝐹′(𝑣𝑣𝑗𝑗) and the 
weighted sum of the 𝛿𝛿s computed for the neurons in the next hidden layer or output layer that are 
connected to neuron j. 
 

When applying Back-Propagation algorithm, two distinct passes of computation are 

distinguished. The first pass is referred to as the forward pass, and the second is referred to as the 

backward pass. In these recent years, the gradient descent approach, proposed by Widrow-Hoff 

procedure and applied via error Back-Propagation to a multilayer neural network, has undergone 

numerous improvements and variations aimed at a more reliable searching for the minimum. One of 

the most efficient modifications of Back-Propagation algorithm is the Levenberg-Marquardt 
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next hidden layer or output layer that are connected to neuron j.

When applying Back-Propagation algorithm, two distinct passes of 
computation are distinguished. The first pass is referred to as the forward pass, 
and the second is referred to as the backward pass. In these recent years, the 
gradient descent approach, proposed by Widrow-Hoff procedure and applied 
via error Back-Propagation to a multilayer neural network, has undergone 
numerous improvements and variations aimed at a more reliable searching 
for the minimum. One of the most efficient modifications of Back-Propagation 
algorithm is the Levenberg-Marquardt approach (Marquardt 1963), also 
called Levenberg-Marquardt Back-Propagation (LMBP), which was applied 
to multilayer neural networks by Hagan and Menhaj (1994). 

Recurrent Neural Network is a class of neural networks where connec-
tions between units form one or more cycles. This creates an internal state of 
the network, which allows it to exhibit a dynamic temporal behaviour. Two 
of the most popular networks belonging to this class are the Elman network 
and the Jordan network (Cruse 2009). The Elman network is very similar 
to a multilayer feed-forward neural network, except for the presence of some 
context units forming a supplementary layer. At their inputs, the context units 
receive the outcomes of specific hidden layer units and send their outcomes 
to the inputs of the same hidden units again. 

These connections form a cycle of information that flows into the net-
work while the network outputs change in time and the input information 
remains constant. The network is then characterised by an internal dynamics 
and the output depends not only on the information presented at the input 
gates, but also on the internal network state. The outcomes of the Elman net-
work are considered the real network responses when the relaxation process 
converges to an internal steady state. The Jordan network is similar to Elman 
networks. The context units are however fed from the output layer instead of 
the hidden layer. The recurrent neural networks take advantage of the pres-
ence of a memory of the recent past (internal recursion) to address complex 
problems in which the temporal aspect is crucial for achieving excellent results, 
such as handwriting recognition or spoken recognition. 



Artificial neural networks and complexity: an overview

125

The Hopfield Network was the first attempt to realise an associative 
memory by means of a connectionist model. Hopfield proposed a network 
where each binary unit is connected to all the remaining units in the net-
work (fully connected network), although no auto-connection are allowed 
(Hopfield 1982). Then, for N neurons, the amount of required connections 
is N(N-1). The connection weights are defined according to the Hebb’s law 
(Hebb 1949). The Hebb’s law is a rule according to which the connection 
weight between a pre- and a post-synaptic neuron tends to grow when the 
activity of the neurons is coherent (that is, they are operating in the same 
state) while it decreases when there is incoherency between the units state. 
Starting with this aspect, Hopfield stored in this network some input patterns 
by determining the weights change according to the coherence/incoherence 
between all units that had to represent the specific “pixel” (or bit) of all the 
considered patterns. 

After defining the network according to its connection weights, when 
the neurons are initialised to an initial configuration and successively allowed 
to evolve freely, the network tends to converge its internal dynamics to one 
of the memorised patterns after a relaxation time. This network was largely 
used for pattern correction and associative storing of information. Several 
networks were proposed, starting with the Hopfield original idea to over-
come some particular drawbacks of the Hopfield network, such as the poor 
storing capacity, the patterns of orthogonality constrain, and the presence of 
undesired memorised phantom patterns. 

Self-Organizing Map (SOM) is a neural network that is trained us-
ing unsupervised learning to produce a low dimensional (typically two-
dimensional), discretised representation of the input space of the training 
samples called a map. As opposed to the training algorithms used for 
feed-forward networks, the unsupervised learning does not require an 
external observing system to define the distance between the correct and 
the actual output pattern to modify the connection weights; instead, it is 
based on implicit internal rules usually aimed at performing a suitable 
representation of the significant features of information. Kohonen (1982) 
proposed the most popular and widely diffused Self-Organizing Map 
(SOM) connectionist model. This network is based on the Winner-Takes-
All (WTA) mechanism and the local training of the units spatially closed 
to the winner neuron. These approaches can be very powerful in defining 
a strategy for finding the closeness between patterns and representing it 
in a low dimensional space. This characteristic is similar to the result of 
application of statistical Principal Component Analysis (PCA) but unlike 
it, the neural process is typically non-linear and the description power of 
a SOM can be considered as more reliable and robust with respect to the 
traditional approaches. 
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4. Representation of the world by ANNs

As stated in the introduction, artificial neural networks have to behold 
the ability to give a representation of the relations between input and output 
stimuli in order to assign a sufficiently general model of the system whose 
data are elaborated. By following the metaphor of the iceberg, data are only 
the observable, usually dynamic, reduced manifestation of the system, but are 
supposed to behold the full information about the dynamic temporal and spa-
tial structure of the system. By heuristic observations, simple problems can be 
solved by neural networks whose structure is, in some sense, as simple as the 
problem complexity level. Conversely, problems with a high level of complex 
behaviour can be addressed only if the network reflects such a complexity in 
its connectivity. This principle is one of the bases of the neural Darwinism 
stated by Edelman (1987). The main thrust of his theory of neural Darwinism 
is that the brain is a somatic selection system similar to evolution, and not an 
instructional system. Here, somatic means that selection is over the time scale 
of a living body instead of being on the time scale of evolution. 

The main difference between an instructional system and a selectional 
system is that the instructional system uses information from the environment 
to change the properties of the object in question, but a selectional system has 
a large and varied population of objects, and the ones that are most fit for the 
environment are differentially reproduced. According to Edelman, the natural 
evolution is the most efficient search algorithm in its proper domain, but similar 
selectional dynamics are present in many other systems, like immune system 
and natural neural networks. What selectional systems give us that instructional 
systems do not, is the fact that they do not require any prior knowledge of the 
environment, and no explicit information transfer from the world.

Whereas with the instructional system, the question of who or what 
decides what is important for the system to learn is in general unresolved. This 
leads to the endless regression of homunculi, implicitly contained in training 
algorithms (supervised training algorithms as Back-Propagation where a supervi-
sor decides the modification of the network weights as a result of the comparison 
between desired and actual output, and unsupervised training algorithms as in 
SOMs where the algorithm structure itself is externally imposed and based on 
the similarities between input data and the network prototypes). 

The strength of Edelman theory relies on the independence of an external 
controller deciding a priori the structure of the network which defines the abil-
ity of the neural system to address the specific task, basing on what reported 
previously. The complexity of the network, in terms of connectivity, is then ruled 
by an evolutionary process, which tend to select the best neural structure to 
optimise the behaviour in the virtual environment defining the problem task. 
From this point of view, the evolutionary approach fulfils the request that a 
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complex task must be addressed by a sufficiently complex algorithmic process, 
in this case an artificial neural network, whose structure is generally unknown 
and depends only on the intuition and experience of the researcher. Similar con-
siderations have been made also in the field of cognitive psychology (Olivettti-
Belardinelli 1986). The human mind builds the representation of the world 
by consequence of the evolutionary process, which led to the actual connectivity 
of the brain, and the mechanisms governing the learning process of neural net-
works as the Hebbian synaptic weight modification rule and the brain plasticity. 

The concept of a brain, or more simply, a neural network whose connec-
tionist structure is governed by evolution over populations of neural network 
generations is at the base of several modern efforts in neural network research, 
attempting to overcome the classical approaches where the network structure 
is defined, by leaving the evolutionary algorithm evolving in terms of connec-
tivity and, in some cases, weights distribution in order to catch and correctly 
represent the complexity of the system under analysis (Montana, Davis 1989; 
Zhang, Mühlenbein 1993; Fiszelew et al. 2007). At present, some interesting 
projects are involved in building a massive neural computer (Migliore et al. 
2006), containing a hundred billions of artificial dynamic neurons and allow-
ing a connectivity at any range order, whose connectionist structure is either 
inspired and led by natural brain areas observation or governed by evolution-
ary algorithms to detect efficient and reliable network structures for the task 
proposed to the artificial system (Izhikevitch, Edelman 2008).

5. Conclusions

 Research on Artificial Neural Networks is still in progress. The evolu-
tion of this field, whose foundations were put by McCulloch and Pitts in 1943 
(McCulloch, Pitts 1943) and, successively, were carried out by Rosenblatt 
(1958), Minsky (Minsky, Papert 1969), Rumelhart, Hinton and Williams 
(Rumelhart et al. 1986), was characterised in the last 20 years by explorations 
towards new ways of conceiving neural networks in terms of connectionist 
structures, training algorithms, neuron modelling and modern technologies for 
a physical implementation and usage. Nevertheless, several theoretical aspects 
have not been still sufficiently analysed and the future of neural networks field 
will certainly be characterised by the following aspects:

1) ANNs are basically an attempt to model the cortical neural circuits in-
volved in natural cognitive processing. Up to now, a general theory about the 
development of cognitive functions in Artificial Neural Networks has not yet 
been formulated, even if several theoretical approaches to artificially emulate 
some fundamental brain cortex areas (as sensorimotor cortex, primary visual 
and auditory cortex) were proposed by means of classical artificial structures 
(Farkaš, Miikkulainen 1999; Boes et al. 2012; Adams et al. 2013). In this 
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framework, the involvement of Darwinist approaches, by means of Genetic 
Algorithms whose genetic information is related to the network structure, 
allows once more to select suitable neural networks aimed to cognitive tasks.
2) One of the most significant criticisms levelled to classical approaches to 
ANNs is the so-called Plasticity-Stability Dilemma. All the common training 
algorithms used to set the synaptic weights in an ANN work in a preliminary 
(off-line) stage whose finality is only to find the best configuration for the 
successive usage of the network. During the normal functioning of the ANN, 
adding some new training data is not recommended since a further training 
phase which does not take into account the old already trained information 
could lead to a total substitution of the stored information and the deletion 
of the original information. Grossberg (1987) tried to address this issue by 
proposing a particular neural processing called Adaptive-Resonance Theory 
(ART), inspired to some neurobiological evidence, allowing the coexistence 
of the two phases and avoiding the destruction of the information already 
learned. However, ART cannot be extended to the other well-defined ANNs as 
Perceptron or SOM, and some other heuristic approach is required to address 
such a specific problem.
3) Some more philosophical issues involved the world of ANNs, with particular 
reference to one of the most discussed topics of the Artificial Intelligence and the 
connection between brain and mind. Some authors (Penrose 1989) proposed to 
address the issue with a reductionist approach, theorising a more complex func-
tioning of individual neurons whose neurobiological mechanisms are affected 
even by a quantum level. Since the molecular action plays a fundamental role in 
the neuronal dynamics, the neuron modelling should take into account the quan-
tic nature of such mechanisms in order to build a solid general theory leading to 
uncover the still mysterious relations between biological matter and conscience.
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Abstract

Understanding the world around us is usually a hard task. All dynamically evolving phe-
nomena in the natural world are produced by a strong interaction among a great number of causes 
and, often, only a few amounts of them are visible or measurable. Moreover, the phenomena may 
be so widely distributed over space and time, like the weather evolution, that only a small number 
of measurements can be taken, making the understanding of the overall system difficult and ap-
proximated. Some characteristics of systems can produce a very strange behaviour, even when the 
elements constituting the system are a small number. All these elements and their mutual interaction 
can produce the so-called complexity. Artificial neural networks (ANNs) form an interesting class 
of dynamic systems, as a paradigm of natural and spontaneous computation. ANNs are founded 
on bases inspired by the neurophysiological nature of neurons and their mutual connectivity. In 
this paper the historical reasons that led to the former mathematical models of neuron and connec-
tionist topologies will be detailed. Over time, they have evolved through the feed-forward systems, 
Self-Organizing Maps, the associative memories up to the latest models in artificial cerebral cortex.


