
113

ARTIFICIAL NEURAL NETWORKS AND COMPLEXITY:
AN OVERVIEW

1. Introduction: complex systems and connectionism

Understanding the world around us is usually a difficult task. All dy-
namically evolving phenomena in the natural world are produced by a strong
interaction among a great number of causes of which only few are visible or
measurable. Moreover, the phenomena, like the weather evolution, may be
so distributed over the space or time that only a small number of measure-
ments can be done, making the understanding of the overall system difficult
and approximated. In general, some characteristics of systems can produce a
very strange behaviour, even when the elements constituting the system are
a small number. All these elements and their mutual interaction can produce
the so-called complexity.

In order to understand the approach a researcher may use in analysing
a system, a very simple metaphor may be adopted: the iceberg. An iceberg is
a floating ice mountain in the sea that shows only a small visible part above
the waterline. If some specific tools are not used to improve our investiga-
tion of the iceberg, all we can describe is the movement of its visible part, the
rate of melting, the colour, the transparency, and the like. Any other aspect
that belongs to the submerged part is excluded from a direct measurement.
Therefore, any hypothesis about the global behaviour of the iceberg can be
proved by using only what we are allowed to see directly. Is all this incomplete
amount of accessible information enough to fully describe the iceberg and
its future evolution? This is a very difficult question to answer. All we could
say is that the visible behaviour, in some sense, contains also the occulted
information and everything that is out of our sight can be extracted from
what is known. Even when no theories or hypotheses are allowable to create
a reference framework, complex systems have the characteristic to show an
evolution through the mixed actions or interactions of the variables.

In observing natural, social, economical, physical, biological systems,
we basically deal with measured data that give us a partial knowledge of
the “visible part” of the system. Therefore, data is required to re-build a
mathematical or algorithmic framework that could be sufficiently detailed
and powerful to describe the fundamental aspects of the system under study,
its evolution over time, and its meaningful characteristics. A system is an or-
ganised, purposeful structure that consists of interrelated and interdependent
elements (components, entities, factors, members, parts, etc.). These elements
continually influence one another (directly or indirectly) to maintain their

Archeologia e Calcolatori
Supplemento 6, 2014, 113-130

A. Londei

114

activity and the existence of the system in order to achieve the goal of the
system. Although all systems have outputs, which are considered as observable
variables that make possible the measurement of what the system is doing at
a given time, they may also:

1) have inputs and feedback mechanisms;
2) maintain an internal steady-state (called homeostasis) despite a changing
external environment;
3) display properties that are different than the whole (called emergent prop-
erties) but are not possessed by any of the individual elements;
4) have boundaries that are usually defined by the system observer.

Systems underlie every phenomenon and all are part of a larger system.
Together, they allow understanding and interpretation of the universe as a
meta-system of interlinked wholes and organise our thoughts about the world.
If a system has no input variables, it is called autonomous; otherwise, if input
variables can modify the outcomes of the system, it is called non-autonomous.
Although different types of systems (from a single cell to the human body,
from soap bubbles to galaxies, from ant colonies to nations) look very differ-
ent on the surface, they have remarkable similarities. At the most basic level,
systems are divided into two categories:

1) Closed systems: theoretical systems that do not interact with the environ-
ment and are not influenced by their surroundings. Only the components
within the system are significant. Example: a sealed jar, nothing enters or
exits the jar, but whatever is inside can interact.
2) Open systems: real-world systems the boundaries of which allow exchanges
of energy, material, and information with the larger external environment
or system in which they exist. Example: a company where, even if there are
separate departments in one organisation, the workers share data and interact
with each other on a daily basis.

Some other differences among systems can be found in terms of deter-
minism. Before addressing this aspect in the world of systems, it is necessary
to define the system state. In a system, the state describes the minimum set of
inner variables that are able to uniquely describe any part of the system. When
a system returns to a specific state or situation, which it already visited in the
past, no differences can be found between the two situations. Therefore, two
identical systems with the same state cannot be distinguished. Of course, not
all the systems have inner states. If a system has no inner states, it is called a
0-order system, and the outputs depend only on the input values. Otherwise,
the presence of inner states in some way gives the system a sort of memory of
the past: what happens now depends on the inputs and also on what the system
did previously. These kinds of systems are called N-order systems, where N

Artificial neural networks and complexity: an overview

115

is, in some sense, the amount of memory the system beholds. Since a system’s
evolution over time depends on the inputs and on the past, the future outcomes
of the system should also be determined by these two elements. In deterministic
systems, the past and the future evolution over time are determined uniquely
for a specific input. This means that if the inner state of a system is known and
the input sequence in time is given, every future evolution of the system will
be known and defined. From the mathematical point of view, a differential
equation form represents a continuous time-deterministic system:

same state cannot be distinguished. Of course, not all the systems have inner states. If a system has

no inner states, it is called a 0-order system, and the outputs depend only on the input values.

Otherwise, the presence of inner states in some way gives the system a sort of memory of the past:

what happens now depends on the inputs and also on what the system did previously. These kinds of

systems are called N-order systems, where N is, in some sense, the amount of memory the system

beholds. Since a system’s evolution over time depends on the inputs and on the past, the future

outcomes of the system should also be determined by these two elements. In deterministic systems,

the past and the future evolution over time are determined uniquely for a specific input. This means

that if the inner state of a system is known and the input sequence in time is given, every future

evolution of the system will be known and defined. From the mathematical point of view, a

differential equation form represents a continuous time-deterministic system:

𝑑𝑑𝒙𝒙
𝑑𝑑𝑑𝑑 = 𝑭𝑭(𝒙𝒙; 𝒚𝒚(𝑡𝑡))

where x is a vector containing all state variables of the system and y is a vector describing inputs

explicitly depending on time (t). If y is zero, the system is autonomous. The same relation in discrete

time is:

𝒙𝒙𝑛𝑛+1 = 𝑮𝑮(𝒙𝒙𝑛𝑛; 𝒚𝒚𝑛𝑛)

F (or G in discrete time domain) is the operator linking the rate of variation of the system

variables to the present state, and it can be either linear or non-linear. In general, the evolution in time

of linear differential equations is completely determined and can be calculated by means of well-

established mathematical techniques. Conversely, non-linear differential equations do not have a

general solution mechanism and in most cases do not admit analytical solutions. Anyway, several

mathematical and geometrical techniques were developed to define the long-term evolution of this

kind of equations and to outline the global behaviour of the differential dynamical system.

Autonomous differential systems have steady states if there exists some combination of x variables

where F(x)=0. In these points, also called fixed points, the variation of x is null and the system will

where x is a vector containing all state variables of the system and y is a vec-
tor describing inputs explicitly depending on time (t). If y is zero, the system
is autonomous. The same relation in discrete time is:

same state cannot be distinguished. Of course, not all the systems have inner states. If a system has

no inner states, it is called a 0-order system, and the outputs depend only on the input values.

Otherwise, the presence of inner states in some way gives the system a sort of memory of the past:

what happens now depends on the inputs and also on what the system did previously. These kinds of

systems are called N-order systems, where N is, in some sense, the amount of memory the system

beholds. Since a system’s evolution over time depends on the inputs and on the past, the future

outcomes of the system should also be determined by these two elements. In deterministic systems,

the past and the future evolution over time are determined uniquely for a specific input. This means

that if the inner state of a system is known and the input sequence in time is given, every future

evolution of the system will be known and defined. From the mathematical point of view, a

differential equation form represents a continuous time-deterministic system:

𝑑𝑑𝒙𝒙
𝑑𝑑𝑑𝑑 = 𝑭𝑭(𝒙𝒙; 𝒚𝒚(𝑡𝑡))

where x is a vector containing all state variables of the system and y is a vector describing inputs

explicitly depending on time (t). If y is zero, the system is autonomous. The same relation in discrete

time is:

𝒙𝒙𝑛𝑛+1 = 𝑮𝑮(𝒙𝒙𝑛𝑛; 𝒚𝒚𝑛𝑛)

F (or G in discrete time domain) is the operator linking the rate of variation of the system

variables to the present state, and it can be either linear or non-linear. In general, the evolution in time

of linear differential equations is completely determined and can be calculated by means of well-

established mathematical techniques. Conversely, non-linear differential equations do not have a

general solution mechanism and in most cases do not admit analytical solutions. Anyway, several

mathematical and geometrical techniques were developed to define the long-term evolution of this

kind of equations and to outline the global behaviour of the differential dynamical system.

Autonomous differential systems have steady states if there exists some combination of x variables

where F(x)=0. In these points, also called fixed points, the variation of x is null and the system will

F (or G in discrete time domain) is the operator linking the rate of variation of
the system variables to the present state, and it can be either linear or non-linear.

In general, the evolution in time of linear differential equations is
completely determined and can be calculated by means of well-established
mathematical techniques. Conversely, non-linear differential equations do not
have a general solution mechanism and in most cases do not admit analytical
solutions. Anyway, several mathematical and geometrical techniques were
developed to define the long-term evolution of this kind of equations and to
outline the global behaviour of the differential dynamical system. Autonomous
differential systems have steady states if there exists some combination of x
variables where F(x)=0. In these points, also called fixed points, the variation
of x is null and the system will keep this steady state until some perturbation
is applied from the external environment (input). The stability of the fixed
points is described by the dynamical behaviour of the surrounding space. The
local space can be studied by a linearization of the dynamic system, and the
general behaviour of the system around the fixed point can be evaluated by
means of the main directions of convergence or divergence (eigenvectors) and
their associated eigenvalues (Robinson 2004).

Linear differential equations, as dynamic outcomes, can produce only
fixed stable or unstable points and oscillations instead of more complex
geometric objects (both in two or higher dimensions). Conversely, non-linear
differential systems can show a greater amount of time evolutions, some of
which are definitely more strange and difficult to deal with. In three or more
dimensions, all previous cases can appear but additional behaviours may be

A. Londei

116

added to the geometric taxonomy of attractors (Guckenheimer, Holmes
1983; Khalil 2001; Jordan, Smith 2007). An attractor is a set of points
in the phase space where all trajectories starting in a sufficiently close state
will converge. The set of all points fulfilling this request is called basin of
attraction. Therefore, the attractive fixed points and orbits shown in two-
dimensional examples are attractors. As mentioned in the previous part, since
the dynamic evolution is considered deterministic, two different trajectories
cannot intersect each other to preserve the uniqueness of the future system
evolution. Starting with this consideration, one may ask what kind of new
attractors may emerge from a high-dimensional non-linear system. Around
1970, physicists and computer scientists encountered a special kind of attrac-
tors that, even if they were describing a deterministic system, they could not
forecast the long-term evolution (or limit behaviour) unless considering a new
geometrical object called fractal. This kind of time evolution of a system was
named chaos. Some examples of chaotic attractors are the Duffing oscillator,
the Lorenz system, or the Chua’s circuit.

A chaotic attractor shows a geometrical form similar to a ball of thread.
Trajectories pass very close to each other but they never intersect, preserv-
ing the deterministic nature of the system. It can be proved that trajectories,
belonging to the chaotic attractor, do not fill the space in which they are
embedded in a uniform way. In previous cases, an attractive fixed point has
a dimension equal to zero, an orbit has a dimension equal to one (length),
surfaces are two-dimensional, volumes three-dimensional, and so on. Chaotic
attractors have a non-integer dimensionality, since they do not fill the space
uniformly and densely. For instance, the Lorenz attractor has a geometrical
Hausdorff dimension equal to 2.06 (Falconer 1985). It means that the tra-
jectory fills the space more than a 2-dimensional surface, but the density of
points is not sufficient to fill the space as a dense volume. This is the reason
why these attractors are called strange or fractal.

Another feature characterising the strange attractors is the local divergence
of close trajectories. Because of the geometrical aspects of this kind of strange
objects, two close initial states are expected to move away from each other with
an exponential law of divergence. The rate of local divergence is measured by
the so-called Lyapunov exponent (Barreira, Pesin 2007). Therefore, even if
the chaotic attractor geometrically describes the global behaviour of the system
and the trajectory remains in that part of the space, when the system explores
a state, which is close to another one visited in past, its evolution is expected to
be very different after some time. The effect of diverging trajectories is called,
by using a metaphor, the Butterfly Effect. This effect explains the dependence of
the system evolution on small indetermination of the initial state. As a matter of
fact, the calculation of a dynamic system time course requires infinite precision
in the knowledge of the initial state. If either a small perturbation or simply a

Artificial neural networks and complexity: an overview

117

rounding operation were applied to the initial state, the future evolution of the
trajectory would be expected to diverge from the predicted one.

Therefore, the Butterfly Effect describes the fundamental importance
of small perturbations in the knowledge of the initial states. The name of the
effect, coined by Edward Lorenz, is derived from the theoretical example of a
hurricane’s formation being contingent on whether or not a distant butterfly
had flapped its wings several weeks before (Lorenz 1996). Finally, another
feature characterising the chaotic attractors is that a chaotic evolution is neither
periodic nor quasi-periodic (i.e., sum of several periodic evolutions the frequen-
cies of which have irrational ratio). Therefore, chaotic evolutions are hardly
distinguishable from random evolutions, and the time series coming from chaotic
systems may be misinterpreted as unpredictable noise. The power spectrum of
chaotic signals reveals continuous dense zones, similarly to noisy and weakly
self-correlated systems. According to the existing literature, non-linear dynamic
systems are deterministic but manifest their time evolution in a way that is
very difficult to describe, analyse, and predict. Long-term prediction is to be
fully excluded, even if the deterministic machine gives the possibility to extract
some useful and interesting parameters to identify the systems (Ruelle 1989).

Complexity can therefore be summarised by mixing the following factors:
high number of dimensions (or descriptive variables), non-linearity in descrip-
tion of differential equation systems, some noise, which may come naturally
from environment, from exclusion of any marginal aspect of the system descrip-
tion, or from measurement errors. Complex systems are therefore characterised
by strange, non-periodic, unpredictable time evolution, strong inter-relation
among variables, sensitivity to initial condition, and difficult discrimination
by noisy non-deterministic phenomena. One may ask the reason why it is so
interesting to define, identify, analyse and understand complex systems.

The answer lies in the fact that most natural systems are ruled by non-
linear differential equations. When these systems are non-autonomous and
admit inputs from external stimuli, a very complex evolution may be difficult
to define: the amount of chaos may change over time and the understanding
of these phenomena becomes difficult. The traditional tools as statistics or
classical mathematical approaches can fail to give sufficient information about
the nature of what was observed. It has been proved that weather prediction
(Lorenz 1963), socio-politic systems (Campbell, Mayer-Kress 1991; Pere
et al. 2006), economic markets (Guégan 2009), stocks (Levy 1994), currency
markets (Chorafas 1994), biological and ecological natural systems (Stone,
Ezrati 1996), among others, are ruled by chaotic equations that, even with
a small set of variables, can show complex and unpredictable evolution.

Complex systems represent a new approach, which studies how rela-
tionships between parts give rise to the collective behaviours of a system and
how the system interacts and forms relationships with its environment. The

A. Londei

118

equations from which complex system models are developed generally derived
from statistical physics, information theory, and non-linear dynamics, and
represent organised but unpredictable behaviours of systems of nature that
are considered fundamentally complex. The physical manifestations of such
systems cannot be defined; thus, the usual choice is to refer to “the system”
as the mathematical information model without referring to the undefined
physical subject that the model represents. The key problems of complex
systems are difficulties with their formal modelling and simulation. From
such a perspective, in different research contexts, complex systems are de-
fined based on their different attributes. Since all complex systems have many
interconnected components, the science of networks and network theory are
important aspects of the study of complex systems. A consensus regarding a
single universal definition of complex system does not yet exist.

For systems that are less usefully represented with equations, various
kinds of narratives and methods are used to identify, explore, design and
interact with complex systems. Some definitions of complexity focus on the
question of the probability of encountering a given condition of a system
once characteristics of the system are specified. The complexity of a particular
system is the degree of difficulty in predicting the properties of the system,
given the properties of the system’s parts (Weaver 1948). In Weaver’s view,
complexity comes in two forms: disorganised complexity and organised com-
plexity. Disorganised complexity results from the particular system having a
very large number of parts, say millions of parts, or many more.

Although the interactions of the parts in a disorganised complexity situ-
ation can be seen as largely random, the properties of the system as a whole
can be understood by using probability and statistical methods. Organised
complexity, on the other hand, resides in nothing else than the non-random,
or correlated, interaction between the parts. These correlated relationships
create a differentiated structure that can, as a system, interact with other
systems. The coordinated system manifests properties not carried or dictated
by individual parts. The organised aspect of this form of complexity can be
said to “emerge” without any “guiding hand”. The number of parts does not
have to be very large for a particular system to have emergent properties. The
properties of a system of organised complexity may be understood through
modelling and simulation conducted particularly with computers.

A very important aspect of complexity can be found in the field of con-
nectionism. Connectionism comprises a set of approaches in artificial cognition
modelling that models mental or behavioural phenomena as emergent processes
of interconnected networks of simple units. The key word linking complexity
and connectionism is “emergence” because the strange and complex phe-
nomena that may arise from non-linear world are, in some sense, unexpected
from the point of view of classical system analysis. For instance, the complex

Artificial neural networks and complexity: an overview

119

behaviour emerged in Lorenz model of weather was so unexpected that the
author himself was convinced that it was an error in the implementation of
the algorithm. The non-linear relationships between weather single elements
and between the neural cells in the brain have in common the possibility of
the emergence of unexpected and extremely interesting behaviour. The in-
teresting part of complexity in brain structures is well known, as it involves
the emergence of efficient approaches to solve difficult tasks that traditional
algorithmic techniques fail to describe even the simplest cases. In the last years,
several problems have been addressed using techniques inspired by natural
connectionism: face recognition (Le 2011), language recognition (Cole 1989),
automatic robot guidance (Gowdy et al. 1991), pattern recognition (Ripley
1996), economic prediction (White 1988), and many others.

Another aspect of connectionism related to complexity is the network
of interconnected simple units. Any interconnected structure of dialoguing
elements that influence the future is related to the behaviour of some set of
neighbour elements of the same kind and is likely to show complex behaviour
in its time evolution. Once again, such a complex behaviour is given either by
the eventual non-linear relationships among elements, by their inner non-linear
dynamics, or by the great amount of elements synchronically evolving in time.

In brain, for example, the complex dynamics can be measured in several
cognitive states but, at the same time, some sort of cooperative coherence can
be relevant depending on the task that the specific cortex area is performing.
Different kind of coherence and different kind of chaotic evolution can relate
to different kind of cognitive states and perceptions. According to what previ-
ously described, complexity is an attribute of connectionist systems. Therefore,
simple non-linear processing units connected to each other according to some
defined rule can be considered as the fundamental elements for building a
complex system the behaviour of which may reflect the complexity of a target
system under investigation (Sporns et al. 2000).

2. Neurons and synaptic connections

The simple units that comprise a neural network are called artificial
neurons, whose behaviour is based on the biological neurons by means of the
functions performed by the latter operating in their natural environment. What
we know about biological neurons is due, among the others, to the pioneering
work of Ramón y Cajál (1911) who introduced the idea of neurons as structural
constituents of the brain. Typically, neurons are rather slower than silicon logic
gates, but the brain compensates the relatively slow rate of operation of a neuron
by having a truly staggering number of neurons with massive interconnections
between them. It is estimated that there are approximately 10 billion neurons
in the human cortex and 60 trillion synapses or connections.

A. Londei

120

The result is that the brain is an enormously efficient structure. Synapses
are elementary structural and functional units that mediate the interactions
between neurons. The most common kind of synapse is the chemical synapse.
When a presynaptic process liberates a transmitter substance (neurotransmit-
ter), it diffuses across the synaptic junction between neurons and then acts on
a postsynaptic process. Therefore, a synapse converts a presynaptic electrical
signal into a chemical signal and then back into a postsynaptic electrical signal.
In terms of physics language, a synapse operates as a one-directional gate in
which information or signals may flow in only one direction. A synapse can
have excitatory or inhibitory function on the receptive neuron but not both.

The modification of synaptic configuration is called plasticity in neuro-
biology. Plasticity permits the developing nervous system to adapt to its sur-
rounding environment. In an adult brain, plasticity can operate by means of
two mechanisms: the creation of new synaptic connections between neurons
and the modification of existing synapses. The former part will be implemented
in the phase of building the structure of an ANN while the second part will
be used in the training phase of a neural system. Bioelectrical signals reach
the synaptic zones, flowing into a special transmission line called axon. Axon
is the unique output of a neuron, and the signal flowing into it is supported
without leakage by the axonal transmitting system until it reaches the syn-
aptic terminals. As mentioned before, a given amount of neurotransmitters is
released and by diffusion, the neurotransmitter molecules reach the receptive
sites of the postsynaptic neurons in specific neural structures called dendrites.
The basic mechanisms underlying the functioning of a neuron can be sum-
marised as follows:

1) The external stimuli reach the neuron inputs by means of the synaptic
transmission. The efficiency and the nature of every synaptic site determine
the amplitude of the signal read by the neuron cell.
2) All the inputs are integrated to define the internal membrane potential.
3) If the membrane potential is greater than a reference threshold potential,
an action potential is generated as a sequence of spikes that is transmitted
along the axon (output channel).
4) The action potential reaches the terminations where the phenomenon of
neurotransmitters diffusion is repeated and the synaptic sites of the post-
synaptic neurons can again read the neuronal stimulus at their inputs.

Here, we identify three basic elements of the neuronal model:

1) A set of synapses, or connecting links, each of which is characterised by a
weight or connection strength. Specifically, a signal xj at the input of synapse
j connected to neuron k is multiplied by the weight wkj. The first subscript
refers to the neuron in question and the second subscript refers to the input
end of the synapse to which the weight refers. Unlike a synapse in the brain,

Artificial neural networks and complexity: an overview

121

the synapse weight of an artificial neuron may lie in a range that includes
negative as well as positive values.
2) An adder (S) for summing (or integrating) the input signals weighted by the
respective synapses of the neuron. The operation described here constitutes
a linear combiner.
3) An activation function (j) for limiting the amplitude of the output of a
neuron. The activation function is also referred to as a squashing function,
since it squashes (limits) the permissible amplitude range of the output signal
to some finite value. Typically, the normalised amplitude range of the output
of a neuron is written as the closed interval [0,1] or alternatively [-1,1].

As stated in Amit (1992), some unexpected perturbations may influence
the output of a neuron. Basically, several sources of incoherent mechanisms
may be identified in the field of biological processes of neurons. These per-
turbations may be due to small fluctuations of neurotransmitter densities
in synaptic vesicles, by the quantised aspect of neurotransmitter molecules,
and by unpredictable fluctuations of biological elements, as for instance
hormones, in the area where the neuron is functioning. The total influence
of these unpredictable causes of noise follows a Gaussian statistical distri-
bution. Since the amount of activity of a neuron is given by the frequency
of spiking pulses, we can say that the number of spikes in the unit of time
is proportional to the probability of activation. A spike is transmitted if the
activation potential is greater than the threshold; therefore, the activity of
a neuron can be formulated in terms of probability depending on the local
field. The mathematical relation linking the activation probability and the
local field defines a characteristic function, widely used in ANNs, usually
called sigmoid or logistic function.

3. ANNs: structure and training

In 1952, Frank Rosenblatt, a psychologist and researcher at the Cornell
University, invented an algorithm to perform a simple learning by an artificial
neural network (Rosenblatt 1958). Since Rosenblatt attempted to model
a sensory system of the brain, this typology of neural network was called
Perceptron. The basic idea was that human beings learn to enter information
and concepts by using common senses (mainly sight and hearing) and store
the information in some kind of memory, such that when specific information
is recalled, it has to be equal to the original one. If the recalled information
were learnt incorrectly, it would be necessary to learn such information again
so that the new recall operation would have a higher probability to be correct
compared to before. This approach can be repeated until all input informa-
tion is correctly stored and classified, if possible. A neural network that is
able to process such information should have a suitable number of inputs for

A. Londei

122

reading the proposed information and an appropriate number of outputs for
describing the class to which it belongs.

A crucial aspect of connectionist models is their ability to learn by experi-
ence. Even in the case of Perceptron, Rosenblatt (1958) proposed an algorithm
named Delta Rule to define the suitable set of synaptic weights and biases for
correctly classifying a set of input-output relations. If the response of an output
unit is incorrect, the network can change to produce the correct response the
next time that the stimulus is presented. The activity of a neuron is determined
by the sum of inputs leading to it and each input is given by the product of
the activity of a presynaptic unit multiplied by the weight of the connection
between them. This means that any change in connection weights will change
the activity level of units in the next layer. Thus, an output unit with activity
that is too low can be corrected by increasing the weights of connections from
units in the previous layer that provide a positive input to it and by decreasing
the weights of connections that provide a negative input. Output units with an
activity that is too high can be corrected by the opposite procedure.

The fundamental aspect of the Delta Rule is that, in the case of binary
units, it cannot be applied to multilayer networks. In a multilayer network,
desired output of hidden units is unknown information since we want to train
the network based on the final output values, which are the values of the last
layer outputs. Therefore, Delta Rule can be applied only to a single layer
Perceptron for linearly separable tasks. Novikoff (1962) proved that the
perceptron Delta Rule algorithm converges after a finite number of iterations
if the dataset is linearly separable. A more general approach can be pursued by
considering the relationship between the overall errors of the network related
to the patterns presented at the input. When all P patterns are presented to
the network, the overall error can be calculated as:

Alessandro Londei (Archeologia e Calcolatori Special Issue in Honour of David L. Clarke Rome 13.01.14)

weights of connections from units in the previous layer that provide a positive input to it and

by decreasing the weights of connections that provide a negative input. Output units with an

activity that is too high can be corrected by the opposite procedure.

The fundamental aspect of the Delta Rule is that, in the case of binary units, it cannot be

applied to multilayer networks. In a multilayer network, desired output of hidden units is

unknown information since we want to train the network based on the final output values,

which are the values of the last layer outputs. Therefore, Delta Rule can be applied only to a

single layer Perceptron for linearly separable tasks. Novikoff (NOVIKOFF 1962) proved that

the perceptron Delta Rule algorithm converges after a finite number of iterations if the data

set is linearly separable. A more general approach can be pursued by considering the

relationship between the overall errors of the network related to the patterns presented at the

input. When all P patterns are presented to the network, the overall error can be calculated as:

𝐸𝐸 =∑𝐸𝐸(𝑝𝑝)
𝑃𝑃

𝑝𝑝=1
= 1
2𝑁𝑁𝑁𝑁∑∑(𝑡𝑡𝑖𝑖

(𝑝𝑝) − 𝑦𝑦𝑖𝑖
(𝑝𝑝))

2
𝑁𝑁

𝑖𝑖=1

𝑃𝑃

𝑝𝑝=1

𝐸𝐸 = ∑𝐸𝐸(𝑝𝑝)
𝑃𝑃

𝑝𝑝=1
= 1
2𝑁𝑁𝑁𝑁∑∑(𝑡𝑡𝑖𝑖

(𝑝𝑝) − 𝑦𝑦𝑖𝑖
(𝑝𝑝))

2
𝑁𝑁

𝑖𝑖=1

𝑃𝑃

𝑝𝑝=1
 (

where 𝑡𝑡𝑖𝑖
(𝑝𝑝) and 𝑦𝑦𝑖𝑖

(𝑝𝑝) are, respectively, the desired and the actual network outcomes for

the p-th presented input pattern, and N is the number of outputs. Note that the error E is

always positive unless the network outcomes are identically equal to the desired output, and

in this case, the error is zero. Since 𝑦𝑦𝑖𝑖
(𝑝𝑝) depends on the network synaptic weights, as well as

on the presented pattern at input, the general error E may be modified by changing the

synaptic inner parameters of the network. In particular, if a given modification of a synaptic

weight ∆𝑤𝑤 eliminates the output error when a certain pattern is presented, such modification

where

where 𝑡𝑡𝑖𝑖
(𝑝𝑝) and 𝑦𝑦𝑖𝑖

(𝑝𝑝) are, respectively, the desired and the actual network outcomes for the p-th

presented input pattern, and N is the number of outputs. Note that the error E is always positive unless

the network outcomes are identically equal to the desired output, and in this case, the error is zero.

Since 𝑦𝑦𝑖𝑖
(𝑝𝑝) depends on the network synaptic weights, as well as on the presented pattern at input, the

general error E may be modified by changing the synaptic inner parameters of the network. In

particular, if a given modification of a synaptic weight ∆𝑤𝑤 eliminates the output error when a certain

pattern is presented, such modification may be considered as a useful contribution to the training.

Thus, the error will be lower the next time the pattern is presented. In order to achieve a better

comprehension of the pattern by the network, a positive increment of the weight should be associated

with a negative error variation, that is, a decrease in the error. In mathematical terms:

∆𝑤𝑤 = −𝜂𝜂 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕 (

where 𝜂𝜂 is a constant training parameter. This approach is called the Least-Mean-Squares procedure

introduced by Widrow and Hoff (WIDROW, HOFF 1960). According to the presented information, the

feed-forward can be trained with Widrow-Hoff procedure, providing that sigmoid activation function

model describes the units. Anyway, in a neural network, the error reduction can be achieved only by

taking into account the whole set of synaptic weights, unlike the Widrow-Hoff procedure that can

treat only the single neural layer case. This issue is avoided by the Back-Propagation training

algorithm, which is based on the Widrow-Hoff approach and allows for estimating the expected

values of the hidden neurons by reconfiguring the Widrow-Hoff algorithmic technique. Two main

steps basically characterise Back-Propagation training algorithm:

1) The computation of the function signal appearing at the output of a neuron, which is expressed as
a continuous sigmoid function of the input signal and synaptic weights associated with that neuron.
2) The computation of an estimate of the gradient vector, which is needed for the backward pass
through the network.

 and

where 𝑡𝑡𝑖𝑖
(𝑝𝑝) and 𝑦𝑦𝑖𝑖

(𝑝𝑝) are, respectively, the desired and the actual network outcomes for the p-th

presented input pattern, and N is the number of outputs. Note that the error E is always positive unless

the network outcomes are identically equal to the desired output, and in this case, the error is zero.

Since 𝑦𝑦𝑖𝑖
(𝑝𝑝) depends on the network synaptic weights, as well as on the presented pattern at input, the

general error E may be modified by changing the synaptic inner parameters of the network. In

particular, if a given modification of a synaptic weight ∆𝑤𝑤 eliminates the output error when a certain

pattern is presented, such modification may be considered as a useful contribution to the training.

Thus, the error will be lower the next time the pattern is presented. In order to achieve a better

comprehension of the pattern by the network, a positive increment of the weight should be associated

with a negative error variation, that is, a decrease in the error. In mathematical terms:

∆𝑤𝑤 = −𝜂𝜂 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕 (

where 𝜂𝜂 is a constant training parameter. This approach is called the Least-Mean-Squares procedure

introduced by Widrow and Hoff (WIDROW, HOFF 1960). According to the presented information, the

feed-forward can be trained with Widrow-Hoff procedure, providing that sigmoid activation function

model describes the units. Anyway, in a neural network, the error reduction can be achieved only by

taking into account the whole set of synaptic weights, unlike the Widrow-Hoff procedure that can

treat only the single neural layer case. This issue is avoided by the Back-Propagation training

algorithm, which is based on the Widrow-Hoff approach and allows for estimating the expected

values of the hidden neurons by reconfiguring the Widrow-Hoff algorithmic technique. Two main

steps basically characterise Back-Propagation training algorithm:

1) The computation of the function signal appearing at the output of a neuron, which is expressed as
a continuous sigmoid function of the input signal and synaptic weights associated with that neuron.
2) The computation of an estimate of the gradient vector, which is needed for the backward pass
through the network.

are, respectively, the desired and the actual network out-
comes for the p-th presented input pattern, and N is the number of outputs.
Note that the error E is always positive unless the network outcomes are iden-
tically equal to the desired output, and in this case, the error is zero. Since

where 𝑡𝑡𝑖𝑖
(𝑝𝑝) and 𝑦𝑦𝑖𝑖

(𝑝𝑝) are, respectively, the desired and the actual network outcomes for the p-th

presented input pattern, and N is the number of outputs. Note that the error E is always positive unless

the network outcomes are identically equal to the desired output, and in this case, the error is zero.

Since 𝑦𝑦𝑖𝑖
(𝑝𝑝) depends on the network synaptic weights, as well as on the presented pattern at input, the

general error E may be modified by changing the synaptic inner parameters of the network. In

particular, if a given modification of a synaptic weight ∆𝑤𝑤 eliminates the output error when a certain

pattern is presented, such modification may be considered as a useful contribution to the training.

Thus, the error will be lower the next time the pattern is presented. In order to achieve a better

comprehension of the pattern by the network, a positive increment of the weight should be associated

with a negative error variation, that is, a decrease in the error. In mathematical terms:

∆𝑤𝑤 = −𝜂𝜂 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕 (

where 𝜂𝜂 is a constant training parameter. This approach is called the Least-Mean-Squares procedure

introduced by Widrow and Hoff (WIDROW, HOFF 1960). According to the presented information, the

feed-forward can be trained with Widrow-Hoff procedure, providing that sigmoid activation function

model describes the units. Anyway, in a neural network, the error reduction can be achieved only by

taking into account the whole set of synaptic weights, unlike the Widrow-Hoff procedure that can

treat only the single neural layer case. This issue is avoided by the Back-Propagation training

algorithm, which is based on the Widrow-Hoff approach and allows for estimating the expected

values of the hidden neurons by reconfiguring the Widrow-Hoff algorithmic technique. Two main

steps basically characterise Back-Propagation training algorithm:

1) The computation of the function signal appearing at the output of a neuron, which is expressed as
a continuous sigmoid function of the input signal and synaptic weights associated with that neuron.
2) The computation of an estimate of the gradient vector, which is needed for the backward pass
through the network.

depends on the network synaptic weights, as well as on the presented pattern
at input, the general error E may be modified by changing the synaptic inner
parameters of the network. In particular, if a given modification of a synaptic
weight

where 𝑡𝑡𝑖𝑖
(𝑝𝑝) and 𝑦𝑦𝑖𝑖

(𝑝𝑝) are, respectively, the desired and the actual network outcomes for the p-th

presented input pattern, and N is the number of outputs. Note that the error E is always positive unless

the network outcomes are identically equal to the desired output, and in this case, the error is zero.

Since 𝑦𝑦𝑖𝑖
(𝑝𝑝) depends on the network synaptic weights, as well as on the presented pattern at input, the

general error E may be modified by changing the synaptic inner parameters of the network. In

particular, if a given modification of a synaptic weight ∆𝑤𝑤 eliminates the output error when a certain

pattern is presented, such modification may be considered as a useful contribution to the training.

Thus, the error will be lower the next time the pattern is presented. In order to achieve a better

comprehension of the pattern by the network, a positive increment of the weight should be associated

with a negative error variation, that is, a decrease in the error. In mathematical terms:

∆𝑤𝑤 = −𝜂𝜂 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕 (

where 𝜂𝜂 is a constant training parameter. This approach is called the Least-Mean-Squares procedure

introduced by Widrow and Hoff (WIDROW, HOFF 1960). According to the presented information, the

feed-forward can be trained with Widrow-Hoff procedure, providing that sigmoid activation function

model describes the units. Anyway, in a neural network, the error reduction can be achieved only by

taking into account the whole set of synaptic weights, unlike the Widrow-Hoff procedure that can

treat only the single neural layer case. This issue is avoided by the Back-Propagation training

algorithm, which is based on the Widrow-Hoff approach and allows for estimating the expected

values of the hidden neurons by reconfiguring the Widrow-Hoff algorithmic technique. Two main

steps basically characterise Back-Propagation training algorithm:

1) The computation of the function signal appearing at the output of a neuron, which is expressed as
a continuous sigmoid function of the input signal and synaptic weights associated with that neuron.
2) The computation of an estimate of the gradient vector, which is needed for the backward pass
through the network.

 eliminates the output error when a certain pattern is presented,
such modification may be considered as a useful contribution to the training.
Thus, the error will be lower the next time the pattern is presented. In order

Artificial neural networks and complexity: an overview

123

to achieve a better comprehension of the pattern by the network, a positive
increment of the weight should be associated with a negative error variation,
that is, a decrease in the error. In mathematical terms:

Alessandro Londei (Archeologia e Calcolatori Special Issue in Honour of David L. Clarke Rome 13.01.14)

may be considered as a useful contribution to the training. Thus, the error will be lower the

next time the pattern is presented. In order to achieve a better comprehension of the pattern by

the network, a positive increment of the weight should be associated with a negative error

variation, that is, a decrease in the error. In mathematical terms:

∆𝑤𝑤 = −𝜂𝜂 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕 (

where 𝜂𝜂 is a constant training parameter. This approach is called the Least-Mean-

Squares procedure introduced by Widrow and Hoff (WIDROW & HOFF 1960). According to

the presented information, the feed-forward can be trained with Widrow-Hoff procedure,

providing that sigmoid activation function model describes the units. Anyway, in a neural

network, the error reduction can be achieved only by taking into account the whole set of

synaptic weights, unlike the Widrow-Hoff procedure that can treat only the single neural layer

case. This issue is avoided by the Back-Propagation training algorithm, which is based on the

Widrow-Hoff approach and allows for estimating the expected values of the hidden neurons

by reconfiguring the Widrow-Hoff algorithmic technique.

Two main steps basically characterise Back-Propagation training algorithm:

1. The computation of the function signal appearing at the output of a neuron, which is

expressed as a continuous sigmoid function of the input signal and synaptic weights

associated with that neuron.

2. The computation of an estimate of the gradient vector, which is needed for the

backward pass through the network.

The objective of the training process is to adjust the free parameters of the network to

minimise the average error. To do this minimisation, the Back-Propagation algorithm,

introduced by Rumelhart, Hinton and Williams (RUMELHART et al.1986), can be used to

exploit the backward error signals to overcome the limit of the Widrow-Hoff approach in case

where

where 𝑡𝑡𝑖𝑖
(𝑝𝑝) and 𝑦𝑦𝑖𝑖

(𝑝𝑝) are, respectively, the desired and the actual network outcomes for the p-th

presented input pattern, and N is the number of outputs. Note that the error E is always positive unless

the network outcomes are identically equal to the desired output, and in this case, the error is zero.

Since 𝑦𝑦𝑖𝑖
(𝑝𝑝) depends on the network synaptic weights, as well as on the presented pattern at input, the

general error E may be modified by changing the synaptic inner parameters of the network. In

particular, if a given modification of a synaptic weight ∆𝑤𝑤 eliminates the output error when a certain

pattern is presented, such modification may be considered as a useful contribution to the training.

Thus, the error will be lower the next time the pattern is presented. In order to achieve a better

comprehension of the pattern by the network, a positive increment of the weight should be associated

with a negative error variation, that is, a decrease in the error. In mathematical terms:

∆𝑤𝑤 = −𝜂𝜂 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕 (

where 𝜂𝜂 is a constant training parameter. This approach is called the Least-Mean-Squares procedure

introduced by Widrow and Hoff (WIDROW, HOFF 1960). According to the presented information, the

feed-forward can be trained with Widrow-Hoff procedure, providing that sigmoid activation function

model describes the units. Anyway, in a neural network, the error reduction can be achieved only by

taking into account the whole set of synaptic weights, unlike the Widrow-Hoff procedure that can

treat only the single neural layer case. This issue is avoided by the Back-Propagation training

algorithm, which is based on the Widrow-Hoff approach and allows for estimating the expected

values of the hidden neurons by reconfiguring the Widrow-Hoff algorithmic technique. Two main

steps basically characterise Back-Propagation training algorithm:

1) The computation of the function signal appearing at the output of a neuron, which is expressed as
a continuous sigmoid function of the input signal and synaptic weights associated with that neuron.
2) The computation of an estimate of the gradient vector, which is needed for the backward pass
through the network.

 is a constant training parameter. This approach is called the Least-
Mean-Squares procedure introduced by Widrow and Hoff (1960). Ac-
cording to the presented information, the feed-forward can be trained with
Widrow-Hoff procedure, providing that sigmoid activation function model
describes the units. Anyway, in a neural network, the error reduction can be
achieved only by taking into account the whole set of synaptic weights, unlike
the Widrow-Hoff procedure that can treat only the single neural layer case.
This issue is avoided by the Back-Propagation training algorithm, which is
based on the Widrow-Hoff approach and allows for estimating the expected
values of the hidden neurons by reconfiguring the Widrow-Hoff algorithmic
technique. Two main steps basically characterise Back-Propagation training
algorithm:

1) The computation of the function signal appearing at the output of a neuron,
which is expressed as a continuous sigmoid function of the input signal and
synaptic weights associated with that neuron.
2) The computation of an estimate of the gradient vector, which is needed for
the backward pass through the network.

The objective of the training process is to adjust the free parameters
of the network to minimise the average error. To do this minimisation, the
Back-Propagation algorithm, introduced by Rumelhart, Hinton and Williams
(Rumelhart et al. 1986), can be used to exploit the backward error signals
to overcome the limit of the Widrow-Hoff approach in case of multilayer
networks. Specifically, we consider a simple method of training in which the
weights are updated on a pattern-by-pattern basis until one epoch, that is,
until one complete presentation of the entire training set has been dealt with.
The weights are adjusted in accordance with the respective errors computed
for each pattern presented to the network. The Back-Propagation algorithm
is used to determine the value of the local gradients of a neuron of a specific
hidden layer according to the local gradients of the next layer on the right.
The local gradient of every hidden layer can be calculated backwards start-
ing with the knowledge of the local gradient of the hidden layer at its right
side (obviously the last hidden layer local gradient is calculated on the basis
of the output layer). We now summarise the relations derived for the Back-
Propagation algorithm. First, the correction

The objective of the training process is to adjust the free parameters of the network to minimise

the average error. To do this minimisation, the Back-Propagation algorithm, introduced by

Rumelhart, Hinton and Williams (RUMELHART et al.1986), can be used to exploit the backward error

signals to overcome the limit of the Widrow-Hoff approach in case of multilayer networks.

Specifically, we consider a simple method of training in which the weights are updated on a pattern-

by-pattern basis until one epoch, that is, until one complete presentation of the entire training set has

been dealt with. The weights are adjusted in accordance with the respective errors computed for each

pattern presented to the network. The Back-Propagation algorithm is used to determine the value of

the local gradients of a neuron of a specific hidden layer according to the local gradients of the next

layer on the right. The local gradient of every hidden layer can be calculated backwards starting with

the knowledge of the local gradient of the hidden layer at its right side (obviously the last hidden layer

local gradient is calculated on the basis of the output layer). We now summarise the relations derived

for the Back-Propagation algorithm. First, the correction ∆𝑤𝑤𝑖𝑖𝑖𝑖 applied to the synaptic weight

connecting neuron i to neuron j is defined by the delta rule:

(Weight correction ∆𝑤𝑤𝑖𝑖𝑖𝑖) = (Learning rate parameter 𝜂𝜂) x (local gradient 𝛿𝛿𝑗𝑗) x (input signal of neuron

j 𝑦𝑦𝑖𝑖).

Second, the local gradient 𝛿𝛿𝑗𝑗 depends on whether neuron j is an output node or a hidden node:

1) If neuron j is an output node, 𝛿𝛿𝑗𝑗 equals the product of the derivative 𝐹𝐹′(𝑣𝑣𝑗𝑗) of the sigmoid function
defined in its state, and the error signal 𝑒𝑒𝑗𝑗, both of which are associated with neuron j.
2) If neuron j is a hidden node, 𝛿𝛿𝑗𝑗 equals the product of the associated derivative 𝐹𝐹′(𝑣𝑣𝑗𝑗) and the
weighted sum of the 𝛿𝛿s computed for the neurons in the next hidden layer or output layer that are
connected to neuron j.

When applying Back-Propagation algorithm, two distinct passes of computation are

distinguished. The first pass is referred to as the forward pass, and the second is referred to as the

backward pass. In these recent years, the gradient descent approach, proposed by Widrow-Hoff

procedure and applied via error Back-Propagation to a multilayer neural network, has undergone

numerous improvements and variations aimed at a more reliable searching for the minimum. One of

the most efficient modifications of Back-Propagation algorithm is the Levenberg-Marquardt

 applied to the synaptic
weight connecting neuron i to neuron j is defined by the delta rule:

A. Londei

124

(Weight correction

The objective of the training process is to adjust the free parameters of the network to minimise

the average error. To do this minimisation, the Back-Propagation algorithm, introduced by

Rumelhart, Hinton and Williams (RUMELHART et al.1986), can be used to exploit the backward error

signals to overcome the limit of the Widrow-Hoff approach in case of multilayer networks.

Specifically, we consider a simple method of training in which the weights are updated on a pattern-

by-pattern basis until one epoch, that is, until one complete presentation of the entire training set has

been dealt with. The weights are adjusted in accordance with the respective errors computed for each

pattern presented to the network. The Back-Propagation algorithm is used to determine the value of

the local gradients of a neuron of a specific hidden layer according to the local gradients of the next

layer on the right. The local gradient of every hidden layer can be calculated backwards starting with

the knowledge of the local gradient of the hidden layer at its right side (obviously the last hidden layer

local gradient is calculated on the basis of the output layer). We now summarise the relations derived

for the Back-Propagation algorithm. First, the correction ∆𝑤𝑤𝑖𝑖𝑖𝑖 applied to the synaptic weight

connecting neuron i to neuron j is defined by the delta rule:

(Weight correction ∆𝑤𝑤𝑖𝑖𝑖𝑖) = (Learning rate parameter 𝜂𝜂) x (local gradient 𝛿𝛿𝑗𝑗) x (input signal of neuron

j 𝑦𝑦𝑖𝑖).

Second, the local gradient 𝛿𝛿𝑗𝑗 depends on whether neuron j is an output node or a hidden node:

1) If neuron j is an output node, 𝛿𝛿𝑗𝑗 equals the product of the derivative 𝐹𝐹′(𝑣𝑣𝑗𝑗) of the sigmoid function
defined in its state, and the error signal 𝑒𝑒𝑗𝑗, both of which are associated with neuron j.
2) If neuron j is a hidden node, 𝛿𝛿𝑗𝑗 equals the product of the associated derivative 𝐹𝐹′(𝑣𝑣𝑗𝑗) and the
weighted sum of the 𝛿𝛿s computed for the neurons in the next hidden layer or output layer that are
connected to neuron j.

When applying Back-Propagation algorithm, two distinct passes of computation are

distinguished. The first pass is referred to as the forward pass, and the second is referred to as the

backward pass. In these recent years, the gradient descent approach, proposed by Widrow-Hoff

procedure and applied via error Back-Propagation to a multilayer neural network, has undergone

numerous improvements and variations aimed at a more reliable searching for the minimum. One of

the most efficient modifications of Back-Propagation algorithm is the Levenberg-Marquardt

) = (Learning rate parameter

The objective of the training process is to adjust the free parameters of the network to minimise

the average error. To do this minimisation, the Back-Propagation algorithm, introduced by

Rumelhart, Hinton and Williams (RUMELHART et al.1986), can be used to exploit the backward error

signals to overcome the limit of the Widrow-Hoff approach in case of multilayer networks.

Specifically, we consider a simple method of training in which the weights are updated on a pattern-

by-pattern basis until one epoch, that is, until one complete presentation of the entire training set has

been dealt with. The weights are adjusted in accordance with the respective errors computed for each

pattern presented to the network. The Back-Propagation algorithm is used to determine the value of

the local gradients of a neuron of a specific hidden layer according to the local gradients of the next

layer on the right. The local gradient of every hidden layer can be calculated backwards starting with

the knowledge of the local gradient of the hidden layer at its right side (obviously the last hidden layer

local gradient is calculated on the basis of the output layer). We now summarise the relations derived

for the Back-Propagation algorithm. First, the correction ∆𝑤𝑤𝑖𝑖𝑖𝑖 applied to the synaptic weight

connecting neuron i to neuron j is defined by the delta rule:

(Weight correction ∆𝑤𝑤𝑖𝑖𝑖𝑖) = (Learning rate parameter 𝜂𝜂) x (local gradient 𝛿𝛿𝑗𝑗) x (input signal of neuron

j 𝑦𝑦𝑖𝑖).

Second, the local gradient 𝛿𝛿𝑗𝑗 depends on whether neuron j is an output node or a hidden node:

1) If neuron j is an output node, 𝛿𝛿𝑗𝑗 equals the product of the derivative 𝐹𝐹′(𝑣𝑣𝑗𝑗) of the sigmoid function
defined in its state, and the error signal 𝑒𝑒𝑗𝑗, both of which are associated with neuron j.
2) If neuron j is a hidden node, 𝛿𝛿𝑗𝑗 equals the product of the associated derivative 𝐹𝐹′(𝑣𝑣𝑗𝑗) and the
weighted sum of the 𝛿𝛿s computed for the neurons in the next hidden layer or output layer that are
connected to neuron j.

When applying Back-Propagation algorithm, two distinct passes of computation are

distinguished. The first pass is referred to as the forward pass, and the second is referred to as the

backward pass. In these recent years, the gradient descent approach, proposed by Widrow-Hoff

procedure and applied via error Back-Propagation to a multilayer neural network, has undergone

numerous improvements and variations aimed at a more reliable searching for the minimum. One of

the most efficient modifications of Back-Propagation algorithm is the Levenberg-Marquardt

) × (local gradient

The objective of the training process is to adjust the free parameters of the network to minimise

the average error. To do this minimisation, the Back-Propagation algorithm, introduced by

Rumelhart, Hinton and Williams (RUMELHART et al.1986), can be used to exploit the backward error

signals to overcome the limit of the Widrow-Hoff approach in case of multilayer networks.

Specifically, we consider a simple method of training in which the weights are updated on a pattern-

by-pattern basis until one epoch, that is, until one complete presentation of the entire training set has

been dealt with. The weights are adjusted in accordance with the respective errors computed for each

pattern presented to the network. The Back-Propagation algorithm is used to determine the value of

the local gradients of a neuron of a specific hidden layer according to the local gradients of the next

layer on the right. The local gradient of every hidden layer can be calculated backwards starting with

the knowledge of the local gradient of the hidden layer at its right side (obviously the last hidden layer

local gradient is calculated on the basis of the output layer). We now summarise the relations derived

for the Back-Propagation algorithm. First, the correction ∆𝑤𝑤𝑖𝑖𝑖𝑖 applied to the synaptic weight

connecting neuron i to neuron j is defined by the delta rule:

(Weight correction ∆𝑤𝑤𝑖𝑖𝑖𝑖) = (Learning rate parameter 𝜂𝜂) x (local gradient 𝛿𝛿𝑗𝑗) x (input signal of neuron

j 𝑦𝑦𝑖𝑖).

Second, the local gradient 𝛿𝛿𝑗𝑗 depends on whether neuron j is an output node or a hidden node:

1) If neuron j is an output node, 𝛿𝛿𝑗𝑗 equals the product of the derivative 𝐹𝐹′(𝑣𝑣𝑗𝑗) of the sigmoid function
defined in its state, and the error signal 𝑒𝑒𝑗𝑗, both of which are associated with neuron j.
2) If neuron j is a hidden node, 𝛿𝛿𝑗𝑗 equals the product of the associated derivative 𝐹𝐹′(𝑣𝑣𝑗𝑗) and the
weighted sum of the 𝛿𝛿s computed for the neurons in the next hidden layer or output layer that are
connected to neuron j.

When applying Back-Propagation algorithm, two distinct passes of computation are

distinguished. The first pass is referred to as the forward pass, and the second is referred to as the

backward pass. In these recent years, the gradient descent approach, proposed by Widrow-Hoff

procedure and applied via error Back-Propagation to a multilayer neural network, has undergone

numerous improvements and variations aimed at a more reliable searching for the minimum. One of

the most efficient modifications of Back-Propagation algorithm is the Levenberg-Marquardt

)
× (input signal of neuron

The objective of the training process is to adjust the free parameters of the network to minimise

the average error. To do this minimisation, the Back-Propagation algorithm, introduced by

Rumelhart, Hinton and Williams (RUMELHART et al.1986), can be used to exploit the backward error

signals to overcome the limit of the Widrow-Hoff approach in case of multilayer networks.

Specifically, we consider a simple method of training in which the weights are updated on a pattern-

by-pattern basis until one epoch, that is, until one complete presentation of the entire training set has

been dealt with. The weights are adjusted in accordance with the respective errors computed for each

pattern presented to the network. The Back-Propagation algorithm is used to determine the value of

the local gradients of a neuron of a specific hidden layer according to the local gradients of the next

layer on the right. The local gradient of every hidden layer can be calculated backwards starting with

the knowledge of the local gradient of the hidden layer at its right side (obviously the last hidden layer

local gradient is calculated on the basis of the output layer). We now summarise the relations derived

for the Back-Propagation algorithm. First, the correction ∆𝑤𝑤𝑖𝑖𝑖𝑖 applied to the synaptic weight

connecting neuron i to neuron j is defined by the delta rule:

(Weight correction ∆𝑤𝑤𝑖𝑖𝑖𝑖) = (Learning rate parameter 𝜂𝜂) x (local gradient 𝛿𝛿𝑗𝑗) x (input signal of neuron

j 𝑦𝑦𝑖𝑖).

Second, the local gradient 𝛿𝛿𝑗𝑗 depends on whether neuron j is an output node or a hidden node:

1) If neuron j is an output node, 𝛿𝛿𝑗𝑗 equals the product of the derivative 𝐹𝐹′(𝑣𝑣𝑗𝑗) of the sigmoid function
defined in its state, and the error signal 𝑒𝑒𝑗𝑗, both of which are associated with neuron j.
2) If neuron j is a hidden node, 𝛿𝛿𝑗𝑗 equals the product of the associated derivative 𝐹𝐹′(𝑣𝑣𝑗𝑗) and the
weighted sum of the 𝛿𝛿s computed for the neurons in the next hidden layer or output layer that are
connected to neuron j.

When applying Back-Propagation algorithm, two distinct passes of computation are

distinguished. The first pass is referred to as the forward pass, and the second is referred to as the

backward pass. In these recent years, the gradient descent approach, proposed by Widrow-Hoff

procedure and applied via error Back-Propagation to a multilayer neural network, has undergone

numerous improvements and variations aimed at a more reliable searching for the minimum. One of

the most efficient modifications of Back-Propagation algorithm is the Levenberg-Marquardt

).

Second, the local gradient

The objective of the training process is to adjust the free parameters of the network to minimise

the average error. To do this minimisation, the Back-Propagation algorithm, introduced by

Rumelhart, Hinton and Williams (RUMELHART et al.1986), can be used to exploit the backward error

signals to overcome the limit of the Widrow-Hoff approach in case of multilayer networks.

Specifically, we consider a simple method of training in which the weights are updated on a pattern-

by-pattern basis until one epoch, that is, until one complete presentation of the entire training set has

been dealt with. The weights are adjusted in accordance with the respective errors computed for each

pattern presented to the network. The Back-Propagation algorithm is used to determine the value of

the local gradients of a neuron of a specific hidden layer according to the local gradients of the next

layer on the right. The local gradient of every hidden layer can be calculated backwards starting with

the knowledge of the local gradient of the hidden layer at its right side (obviously the last hidden layer

local gradient is calculated on the basis of the output layer). We now summarise the relations derived

for the Back-Propagation algorithm. First, the correction ∆𝑤𝑤𝑖𝑖𝑖𝑖 applied to the synaptic weight

connecting neuron i to neuron j is defined by the delta rule:

(Weight correction ∆𝑤𝑤𝑖𝑖𝑖𝑖) = (Learning rate parameter 𝜂𝜂) x (local gradient 𝛿𝛿𝑗𝑗) x (input signal of neuron

j 𝑦𝑦𝑖𝑖).

Second, the local gradient 𝛿𝛿𝑗𝑗 depends on whether neuron j is an output node or a hidden node:

1) If neuron j is an output node, 𝛿𝛿𝑗𝑗 equals the product of the derivative 𝐹𝐹′(𝑣𝑣𝑗𝑗) of the sigmoid function
defined in its state, and the error signal 𝑒𝑒𝑗𝑗, both of which are associated with neuron j.
2) If neuron j is a hidden node, 𝛿𝛿𝑗𝑗 equals the product of the associated derivative 𝐹𝐹′(𝑣𝑣𝑗𝑗) and the
weighted sum of the 𝛿𝛿s computed for the neurons in the next hidden layer or output layer that are
connected to neuron j.

When applying Back-Propagation algorithm, two distinct passes of computation are

distinguished. The first pass is referred to as the forward pass, and the second is referred to as the

backward pass. In these recent years, the gradient descent approach, proposed by Widrow-Hoff

procedure and applied via error Back-Propagation to a multilayer neural network, has undergone

numerous improvements and variations aimed at a more reliable searching for the minimum. One of

the most efficient modifications of Back-Propagation algorithm is the Levenberg-Marquardt

 depends on whether neuron j is an output
node or a hidden node:

1) If neuron j is an output node,

The objective of the training process is to adjust the free parameters of the network to minimise

the average error. To do this minimisation, the Back-Propagation algorithm, introduced by

Rumelhart, Hinton and Williams (RUMELHART et al.1986), can be used to exploit the backward error

signals to overcome the limit of the Widrow-Hoff approach in case of multilayer networks.

Specifically, we consider a simple method of training in which the weights are updated on a pattern-

by-pattern basis until one epoch, that is, until one complete presentation of the entire training set has

been dealt with. The weights are adjusted in accordance with the respective errors computed for each

pattern presented to the network. The Back-Propagation algorithm is used to determine the value of

the local gradients of a neuron of a specific hidden layer according to the local gradients of the next

layer on the right. The local gradient of every hidden layer can be calculated backwards starting with

the knowledge of the local gradient of the hidden layer at its right side (obviously the last hidden layer

local gradient is calculated on the basis of the output layer). We now summarise the relations derived

for the Back-Propagation algorithm. First, the correction ∆𝑤𝑤𝑖𝑖𝑖𝑖 applied to the synaptic weight

connecting neuron i to neuron j is defined by the delta rule:

(Weight correction ∆𝑤𝑤𝑖𝑖𝑖𝑖) = (Learning rate parameter 𝜂𝜂) x (local gradient 𝛿𝛿𝑗𝑗) x (input signal of neuron

j 𝑦𝑦𝑖𝑖).

Second, the local gradient 𝛿𝛿𝑗𝑗 depends on whether neuron j is an output node or a hidden node:

1) If neuron j is an output node, 𝛿𝛿𝑗𝑗 equals the product of the derivative 𝐹𝐹′(𝑣𝑣𝑗𝑗) of the sigmoid function
defined in its state, and the error signal 𝑒𝑒𝑗𝑗, both of which are associated with neuron j.
2) If neuron j is a hidden node, 𝛿𝛿𝑗𝑗 equals the product of the associated derivative 𝐹𝐹′(𝑣𝑣𝑗𝑗) and the
weighted sum of the 𝛿𝛿s computed for the neurons in the next hidden layer or output layer that are
connected to neuron j.

When applying Back-Propagation algorithm, two distinct passes of computation are

distinguished. The first pass is referred to as the forward pass, and the second is referred to as the

backward pass. In these recent years, the gradient descent approach, proposed by Widrow-Hoff

procedure and applied via error Back-Propagation to a multilayer neural network, has undergone

numerous improvements and variations aimed at a more reliable searching for the minimum. One of

the most efficient modifications of Back-Propagation algorithm is the Levenberg-Marquardt

 equals the product of the derivative

The objective of the training process is to adjust the free parameters of the network to minimise

the average error. To do this minimisation, the Back-Propagation algorithm, introduced by

Rumelhart, Hinton and Williams (RUMELHART et al.1986), can be used to exploit the backward error

signals to overcome the limit of the Widrow-Hoff approach in case of multilayer networks.

Specifically, we consider a simple method of training in which the weights are updated on a pattern-

by-pattern basis until one epoch, that is, until one complete presentation of the entire training set has

been dealt with. The weights are adjusted in accordance with the respective errors computed for each

pattern presented to the network. The Back-Propagation algorithm is used to determine the value of

the local gradients of a neuron of a specific hidden layer according to the local gradients of the next

layer on the right. The local gradient of every hidden layer can be calculated backwards starting with

the knowledge of the local gradient of the hidden layer at its right side (obviously the last hidden layer

local gradient is calculated on the basis of the output layer). We now summarise the relations derived

for the Back-Propagation algorithm. First, the correction ∆𝑤𝑤𝑖𝑖𝑖𝑖 applied to the synaptic weight

connecting neuron i to neuron j is defined by the delta rule:

(Weight correction ∆𝑤𝑤𝑖𝑖𝑖𝑖) = (Learning rate parameter 𝜂𝜂) x (local gradient 𝛿𝛿𝑗𝑗) x (input signal of neuron

j 𝑦𝑦𝑖𝑖).

Second, the local gradient 𝛿𝛿𝑗𝑗 depends on whether neuron j is an output node or a hidden node:

1) If neuron j is an output node, 𝛿𝛿𝑗𝑗 equals the product of the derivative 𝐹𝐹′(𝑣𝑣𝑗𝑗) of the sigmoid function
defined in its state, and the error signal 𝑒𝑒𝑗𝑗, both of which are associated with neuron j.
2) If neuron j is a hidden node, 𝛿𝛿𝑗𝑗 equals the product of the associated derivative 𝐹𝐹′(𝑣𝑣𝑗𝑗) and the
weighted sum of the 𝛿𝛿s computed for the neurons in the next hidden layer or output layer that are
connected to neuron j.

When applying Back-Propagation algorithm, two distinct passes of computation are

distinguished. The first pass is referred to as the forward pass, and the second is referred to as the

backward pass. In these recent years, the gradient descent approach, proposed by Widrow-Hoff

procedure and applied via error Back-Propagation to a multilayer neural network, has undergone

numerous improvements and variations aimed at a more reliable searching for the minimum. One of

the most efficient modifications of Back-Propagation algorithm is the Levenberg-Marquardt

of the sigmoid function defined in its state, and the error signal

The objective of the training process is to adjust the free parameters of the network to minimise

the average error. To do this minimisation, the Back-Propagation algorithm, introduced by

Rumelhart, Hinton and Williams (RUMELHART et al.1986), can be used to exploit the backward error

signals to overcome the limit of the Widrow-Hoff approach in case of multilayer networks.

Specifically, we consider a simple method of training in which the weights are updated on a pattern-

by-pattern basis until one epoch, that is, until one complete presentation of the entire training set has

been dealt with. The weights are adjusted in accordance with the respective errors computed for each

pattern presented to the network. The Back-Propagation algorithm is used to determine the value of

the local gradients of a neuron of a specific hidden layer according to the local gradients of the next

layer on the right. The local gradient of every hidden layer can be calculated backwards starting with

the knowledge of the local gradient of the hidden layer at its right side (obviously the last hidden layer

local gradient is calculated on the basis of the output layer). We now summarise the relations derived

for the Back-Propagation algorithm. First, the correction ∆𝑤𝑤𝑖𝑖𝑖𝑖 applied to the synaptic weight

connecting neuron i to neuron j is defined by the delta rule:

(Weight correction ∆𝑤𝑤𝑖𝑖𝑖𝑖) = (Learning rate parameter 𝜂𝜂) x (local gradient 𝛿𝛿𝑗𝑗) x (input signal of neuron

j 𝑦𝑦𝑖𝑖).

Second, the local gradient 𝛿𝛿𝑗𝑗 depends on whether neuron j is an output node or a hidden node:

1) If neuron j is an output node, 𝛿𝛿𝑗𝑗 equals the product of the derivative 𝐹𝐹′(𝑣𝑣𝑗𝑗) of the sigmoid function
defined in its state, and the error signal 𝑒𝑒𝑗𝑗, both of which are associated with neuron j.
2) If neuron j is a hidden node, 𝛿𝛿𝑗𝑗 equals the product of the associated derivative 𝐹𝐹′(𝑣𝑣𝑗𝑗) and the
weighted sum of the 𝛿𝛿s computed for the neurons in the next hidden layer or output layer that are
connected to neuron j.

When applying Back-Propagation algorithm, two distinct passes of computation are

distinguished. The first pass is referred to as the forward pass, and the second is referred to as the

backward pass. In these recent years, the gradient descent approach, proposed by Widrow-Hoff

procedure and applied via error Back-Propagation to a multilayer neural network, has undergone

numerous improvements and variations aimed at a more reliable searching for the minimum. One of

the most efficient modifications of Back-Propagation algorithm is the Levenberg-Marquardt

, both of
which are associated with neuron j.
2) If neuron j is a hidden node,

The objective of the training process is to adjust the free parameters of the network to minimise

the average error. To do this minimisation, the Back-Propagation algorithm, introduced by

Rumelhart, Hinton and Williams (RUMELHART et al.1986), can be used to exploit the backward error

signals to overcome the limit of the Widrow-Hoff approach in case of multilayer networks.

Specifically, we consider a simple method of training in which the weights are updated on a pattern-

by-pattern basis until one epoch, that is, until one complete presentation of the entire training set has

been dealt with. The weights are adjusted in accordance with the respective errors computed for each

pattern presented to the network. The Back-Propagation algorithm is used to determine the value of

the local gradients of a neuron of a specific hidden layer according to the local gradients of the next

layer on the right. The local gradient of every hidden layer can be calculated backwards starting with

the knowledge of the local gradient of the hidden layer at its right side (obviously the last hidden layer

local gradient is calculated on the basis of the output layer). We now summarise the relations derived

for the Back-Propagation algorithm. First, the correction ∆𝑤𝑤𝑖𝑖𝑖𝑖 applied to the synaptic weight

connecting neuron i to neuron j is defined by the delta rule:

(Weight correction ∆𝑤𝑤𝑖𝑖𝑖𝑖) = (Learning rate parameter 𝜂𝜂) x (local gradient 𝛿𝛿𝑗𝑗) x (input signal of neuron

j 𝑦𝑦𝑖𝑖).

Second, the local gradient 𝛿𝛿𝑗𝑗 depends on whether neuron j is an output node or a hidden node:

1) If neuron j is an output node, 𝛿𝛿𝑗𝑗 equals the product of the derivative 𝐹𝐹′(𝑣𝑣𝑗𝑗) of the sigmoid function
defined in its state, and the error signal 𝑒𝑒𝑗𝑗, both of which are associated with neuron j.
2) If neuron j is a hidden node, 𝛿𝛿𝑗𝑗 equals the product of the associated derivative 𝐹𝐹′(𝑣𝑣𝑗𝑗) and the
weighted sum of the 𝛿𝛿s computed for the neurons in the next hidden layer or output layer that are
connected to neuron j.

When applying Back-Propagation algorithm, two distinct passes of computation are

distinguished. The first pass is referred to as the forward pass, and the second is referred to as the

backward pass. In these recent years, the gradient descent approach, proposed by Widrow-Hoff

procedure and applied via error Back-Propagation to a multilayer neural network, has undergone

numerous improvements and variations aimed at a more reliable searching for the minimum. One of

the most efficient modifications of Back-Propagation algorithm is the Levenberg-Marquardt

 equals the product of the associated deriva-
tive

The objective of the training process is to adjust the free parameters of the network to minimise

the average error. To do this minimisation, the Back-Propagation algorithm, introduced by

Rumelhart, Hinton and Williams (RUMELHART et al.1986), can be used to exploit the backward error

signals to overcome the limit of the Widrow-Hoff approach in case of multilayer networks.

Specifically, we consider a simple method of training in which the weights are updated on a pattern-

by-pattern basis until one epoch, that is, until one complete presentation of the entire training set has

been dealt with. The weights are adjusted in accordance with the respective errors computed for each

pattern presented to the network. The Back-Propagation algorithm is used to determine the value of

the local gradients of a neuron of a specific hidden layer according to the local gradients of the next

layer on the right. The local gradient of every hidden layer can be calculated backwards starting with

the knowledge of the local gradient of the hidden layer at its right side (obviously the last hidden layer

local gradient is calculated on the basis of the output layer). We now summarise the relations derived

for the Back-Propagation algorithm. First, the correction ∆𝑤𝑤𝑖𝑖𝑖𝑖 applied to the synaptic weight

connecting neuron i to neuron j is defined by the delta rule:

(Weight correction ∆𝑤𝑤𝑖𝑖𝑖𝑖) = (Learning rate parameter 𝜂𝜂) x (local gradient 𝛿𝛿𝑗𝑗) x (input signal of neuron

j 𝑦𝑦𝑖𝑖).

Second, the local gradient 𝛿𝛿𝑗𝑗 depends on whether neuron j is an output node or a hidden node:

1) If neuron j is an output node, 𝛿𝛿𝑗𝑗 equals the product of the derivative 𝐹𝐹′(𝑣𝑣𝑗𝑗) of the sigmoid function
defined in its state, and the error signal 𝑒𝑒𝑗𝑗, both of which are associated with neuron j.
2) If neuron j is a hidden node, 𝛿𝛿𝑗𝑗 equals the product of the associated derivative 𝐹𝐹′(𝑣𝑣𝑗𝑗) and the
weighted sum of the 𝛿𝛿s computed for the neurons in the next hidden layer or output layer that are
connected to neuron j.

When applying Back-Propagation algorithm, two distinct passes of computation are

distinguished. The first pass is referred to as the forward pass, and the second is referred to as the

backward pass. In these recent years, the gradient descent approach, proposed by Widrow-Hoff

procedure and applied via error Back-Propagation to a multilayer neural network, has undergone

numerous improvements and variations aimed at a more reliable searching for the minimum. One of

the most efficient modifications of Back-Propagation algorithm is the Levenberg-Marquardt

 and the weighted sum of the

The objective of the training process is to adjust the free parameters of the network to minimise

the average error. To do this minimisation, the Back-Propagation algorithm, introduced by

Rumelhart, Hinton and Williams (RUMELHART et al.1986), can be used to exploit the backward error

signals to overcome the limit of the Widrow-Hoff approach in case of multilayer networks.

Specifically, we consider a simple method of training in which the weights are updated on a pattern-

by-pattern basis until one epoch, that is, until one complete presentation of the entire training set has

been dealt with. The weights are adjusted in accordance with the respective errors computed for each

pattern presented to the network. The Back-Propagation algorithm is used to determine the value of

the local gradients of a neuron of a specific hidden layer according to the local gradients of the next

layer on the right. The local gradient of every hidden layer can be calculated backwards starting with

the knowledge of the local gradient of the hidden layer at its right side (obviously the last hidden layer

local gradient is calculated on the basis of the output layer). We now summarise the relations derived

for the Back-Propagation algorithm. First, the correction ∆𝑤𝑤𝑖𝑖𝑖𝑖 applied to the synaptic weight

connecting neuron i to neuron j is defined by the delta rule:

(Weight correction ∆𝑤𝑤𝑖𝑖𝑖𝑖) = (Learning rate parameter 𝜂𝜂) x (local gradient 𝛿𝛿𝑗𝑗) x (input signal of neuron

j 𝑦𝑦𝑖𝑖).

Second, the local gradient 𝛿𝛿𝑗𝑗 depends on whether neuron j is an output node or a hidden node:

1) If neuron j is an output node, 𝛿𝛿𝑗𝑗 equals the product of the derivative 𝐹𝐹′(𝑣𝑣𝑗𝑗) of the sigmoid function
defined in its state, and the error signal 𝑒𝑒𝑗𝑗, both of which are associated with neuron j.
2) If neuron j is a hidden node, 𝛿𝛿𝑗𝑗 equals the product of the associated derivative 𝐹𝐹′(𝑣𝑣𝑗𝑗) and the
weighted sum of the 𝛿𝛿s computed for the neurons in the next hidden layer or output layer that are
connected to neuron j.

When applying Back-Propagation algorithm, two distinct passes of computation are

distinguished. The first pass is referred to as the forward pass, and the second is referred to as the

backward pass. In these recent years, the gradient descent approach, proposed by Widrow-Hoff

procedure and applied via error Back-Propagation to a multilayer neural network, has undergone

numerous improvements and variations aimed at a more reliable searching for the minimum. One of

the most efficient modifications of Back-Propagation algorithm is the Levenberg-Marquardt

s computed for the neurons in the
next hidden layer or output layer that are connected to neuron j.

When applying Back-Propagation algorithm, two distinct passes of
computation are distinguished. The first pass is referred to as the forward pass,
and the second is referred to as the backward pass. In these recent years, the
gradient descent approach, proposed by Widrow-Hoff procedure and applied
via error Back-Propagation to a multilayer neural network, has undergone
numerous improvements and variations aimed at a more reliable searching
for the minimum. One of the most efficient modifications of Back-Propagation
algorithm is the Levenberg-Marquardt approach (Marquardt 1963), also
called Levenberg-Marquardt Back-Propagation (LMBP), which was applied
to multilayer neural networks by Hagan and Menhaj (1994).

Recurrent Neural Network is a class of neural networks where connec-
tions between units form one or more cycles. This creates an internal state of
the network, which allows it to exhibit a dynamic temporal behaviour. Two
of the most popular networks belonging to this class are the Elman network
and the Jordan network (Cruse 2009). The Elman network is very similar
to a multilayer feed-forward neural network, except for the presence of some
context units forming a supplementary layer. At their inputs, the context units
receive the outcomes of specific hidden layer units and send their outcomes
to the inputs of the same hidden units again.

These connections form a cycle of information that flows into the net-
work while the network outputs change in time and the input information
remains constant. The network is then characterised by an internal dynamics
and the output depends not only on the information presented at the input
gates, but also on the internal network state. The outcomes of the Elman net-
work are considered the real network responses when the relaxation process
converges to an internal steady state. The Jordan network is similar to Elman
networks. The context units are however fed from the output layer instead of
the hidden layer. The recurrent neural networks take advantage of the pres-
ence of a memory of the recent past (internal recursion) to address complex
problems in which the temporal aspect is crucial for achieving excellent results,
such as handwriting recognition or spoken recognition.

Artificial neural networks and complexity: an overview

125

The Hopfield Network was the first attempt to realise an associative
memory by means of a connectionist model. Hopfield proposed a network
where each binary unit is connected to all the remaining units in the net-
work (fully connected network), although no auto-connection are allowed
(Hopfield 1982). Then, for N neurons, the amount of required connections
is N(N-1). The connection weights are defined according to the Hebb’s law
(Hebb 1949). The Hebb’s law is a rule according to which the connection
weight between a pre- and a post-synaptic neuron tends to grow when the
activity of the neurons is coherent (that is, they are operating in the same
state) while it decreases when there is incoherency between the units state.
Starting with this aspect, Hopfield stored in this network some input patterns
by determining the weights change according to the coherence/incoherence
between all units that had to represent the specific “pixel” (or bit) of all the
considered patterns.

After defining the network according to its connection weights, when
the neurons are initialised to an initial configuration and successively allowed
to evolve freely, the network tends to converge its internal dynamics to one
of the memorised patterns after a relaxation time. This network was largely
used for pattern correction and associative storing of information. Several
networks were proposed, starting with the Hopfield original idea to over-
come some particular drawbacks of the Hopfield network, such as the poor
storing capacity, the patterns of orthogonality constrain, and the presence of
undesired memorised phantom patterns.

Self-Organizing Map (SOM) is a neural network that is trained us-
ing unsupervised learning to produce a low dimensional (typically two-
dimensional), discretised representation of the input space of the training
samples called a map. As opposed to the training algorithms used for
feed-forward networks, the unsupervised learning does not require an
external observing system to define the distance between the correct and
the actual output pattern to modify the connection weights; instead, it is
based on implicit internal rules usually aimed at performing a suitable
representation of the significant features of information. Kohonen (1982)
proposed the most popular and widely diffused Self-Organizing Map
(SOM) connectionist model. This network is based on the Winner-Takes-
All (WTA) mechanism and the local training of the units spatially closed
to the winner neuron. These approaches can be very powerful in defining
a strategy for finding the closeness between patterns and representing it
in a low dimensional space. This characteristic is similar to the result of
application of statistical Principal Component Analysis (PCA) but unlike
it, the neural process is typically non-linear and the description power of
a SOM can be considered as more reliable and robust with respect to the
traditional approaches.

A. Londei

126

4. Representation of the world by ANNs

As stated in the introduction, artificial neural networks have to behold
the ability to give a representation of the relations between input and output
stimuli in order to assign a sufficiently general model of the system whose
data are elaborated. By following the metaphor of the iceberg, data are only
the observable, usually dynamic, reduced manifestation of the system, but are
supposed to behold the full information about the dynamic temporal and spa-
tial structure of the system. By heuristic observations, simple problems can be
solved by neural networks whose structure is, in some sense, as simple as the
problem complexity level. Conversely, problems with a high level of complex
behaviour can be addressed only if the network reflects such a complexity in
its connectivity. This principle is one of the bases of the neural Darwinism
stated by Edelman (1987). The main thrust of his theory of neural Darwinism
is that the brain is a somatic selection system similar to evolution, and not an
instructional system. Here, somatic means that selection is over the time scale
of a living body instead of being on the time scale of evolution.

The main difference between an instructional system and a selectional
system is that the instructional system uses information from the environment
to change the properties of the object in question, but a selectional system has
a large and varied population of objects, and the ones that are most fit for the
environment are differentially reproduced. According to Edelman, the natural
evolution is the most efficient search algorithm in its proper domain, but similar
selectional dynamics are present in many other systems, like immune system
and natural neural networks. What selectional systems give us that instructional
systems do not, is the fact that they do not require any prior knowledge of the
environment, and no explicit information transfer from the world.

Whereas with the instructional system, the question of who or what
decides what is important for the system to learn is in general unresolved. This
leads to the endless regression of homunculi, implicitly contained in training
algorithms (supervised training algorithms as Back-Propagation where a supervi-
sor decides the modification of the network weights as a result of the comparison
between desired and actual output, and unsupervised training algorithms as in
SOMs where the algorithm structure itself is externally imposed and based on
the similarities between input data and the network prototypes).

The strength of Edelman theory relies on the independence of an external
controller deciding a priori the structure of the network which defines the abil-
ity of the neural system to address the specific task, basing on what reported
previously. The complexity of the network, in terms of connectivity, is then ruled
by an evolutionary process, which tend to select the best neural structure to
optimise the behaviour in the virtual environment defining the problem task.
From this point of view, the evolutionary approach fulfils the request that a

Artificial neural networks and complexity: an overview

127

complex task must be addressed by a sufficiently complex algorithmic process,
in this case an artificial neural network, whose structure is generally unknown
and depends only on the intuition and experience of the researcher. Similar con-
siderations have been made also in the field of cognitive psychology (Olivettti-
Belardinelli 1986). The human mind builds the representation of the world
by consequence of the evolutionary process, which led to the actual connectivity
of the brain, and the mechanisms governing the learning process of neural net-
works as the Hebbian synaptic weight modification rule and the brain plasticity.

The concept of a brain, or more simply, a neural network whose connec-
tionist structure is governed by evolution over populations of neural network
generations is at the base of several modern efforts in neural network research,
attempting to overcome the classical approaches where the network structure
is defined, by leaving the evolutionary algorithm evolving in terms of connec-
tivity and, in some cases, weights distribution in order to catch and correctly
represent the complexity of the system under analysis (Montana, Davis 1989;
Zhang, Mühlenbein 1993; Fiszelew et al. 2007). At present, some interesting
projects are involved in building a massive neural computer (Migliore et al.
2006), containing a hundred billions of artificial dynamic neurons and allow-
ing a connectivity at any range order, whose connectionist structure is either
inspired and led by natural brain areas observation or governed by evolution-
ary algorithms to detect efficient and reliable network structures for the task
proposed to the artificial system (Izhikevitch, Edelman 2008).

5. Conclusions

 Research on Artificial Neural Networks is still in progress. The evolu-
tion of this field, whose foundations were put by McCulloch and Pitts in 1943
(McCulloch, Pitts 1943) and, successively, were carried out by Rosenblatt
(1958), Minsky (Minsky, Papert 1969), Rumelhart, Hinton and Williams
(Rumelhart et al. 1986), was characterised in the last 20 years by explorations
towards new ways of conceiving neural networks in terms of connectionist
structures, training algorithms, neuron modelling and modern technologies for
a physical implementation and usage. Nevertheless, several theoretical aspects
have not been still sufficiently analysed and the future of neural networks field
will certainly be characterised by the following aspects:

1) ANNs are basically an attempt to model the cortical neural circuits in-
volved in natural cognitive processing. Up to now, a general theory about the
development of cognitive functions in Artificial Neural Networks has not yet
been formulated, even if several theoretical approaches to artificially emulate
some fundamental brain cortex areas (as sensorimotor cortex, primary visual
and auditory cortex) were proposed by means of classical artificial structures
(Farkaš, Miikkulainen 1999; Boes et al. 2012; Adams et al. 2013). In this

A. Londei

128

framework, the involvement of Darwinist approaches, by means of Genetic
Algorithms whose genetic information is related to the network structure,
allows once more to select suitable neural networks aimed to cognitive tasks.
2) One of the most significant criticisms levelled to classical approaches to
ANNs is the so-called Plasticity-Stability Dilemma. All the common training
algorithms used to set the synaptic weights in an ANN work in a preliminary
(off-line) stage whose finality is only to find the best configuration for the
successive usage of the network. During the normal functioning of the ANN,
adding some new training data is not recommended since a further training
phase which does not take into account the old already trained information
could lead to a total substitution of the stored information and the deletion
of the original information. Grossberg (1987) tried to address this issue by
proposing a particular neural processing called Adaptive-Resonance Theory
(ART), inspired to some neurobiological evidence, allowing the coexistence
of the two phases and avoiding the destruction of the information already
learned. However, ART cannot be extended to the other well-defined ANNs as
Perceptron or SOM, and some other heuristic approach is required to address
such a specific problem.
3) Some more philosophical issues involved the world of ANNs, with particular
reference to one of the most discussed topics of the Artificial Intelligence and the
connection between brain and mind. Some authors (Penrose 1989) proposed to
address the issue with a reductionist approach, theorising a more complex func-
tioning of individual neurons whose neurobiological mechanisms are affected
even by a quantum level. Since the molecular action plays a fundamental role in
the neuronal dynamics, the neuron modelling should take into account the quan-
tic nature of such mechanisms in order to build a solid general theory leading to
uncover the still mysterious relations between biological matter and conscience.

Alessandro Londei
CeNCA – Centro di Neuroscienze Cognitive

LAA&AAS
Sapienza Università di Roma

References

Adams S.V., Wennekers T., Denham S., Culverhouse P.F. 2013, Adaptive training of cor-
tical feature maps for a robot sensorimotor controller, «Neural Networks», 44, 6-21.

Amit D. 1992, Modeling Brain Function: The World of Attractor Neural Networks, Cambridge,
Cambridge University Press.

Barreira L., Yakov P. 2007, Nonuniform Hyperbolicity. Dynamics of Systems with Nonzero
Lyapunov Exponents, Cambridge, Cambridge University Press.

Boes M., Oldoni D., De Coensel B., Botteldooren D. 2012, Attention-driven auditory stre-
am segregation using a SOM coupled with an excitatory-inhibitory ANN, in Procee-
dings of the International Joint Conference on Neural Networks (IJCNN) (Brisbane, Au-
stralia 2012) (http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6241467/).

Artificial neural networks and complexity: an overview

129

Campbell D., Mayer-Kress G. 1991, Chaos and Politics: Applications of Nonlinear Dynamics
to Socio-Political Issues, Santa Fe Institute, Paper #: 91-09-032.

Chorafas D.N. 1994, Chaos Theory in the Financial Markets, McGraw Hill Professional.
Cole R.A. 1989, Language identification with neural networks: a feasibility study, Institute of

Electrical and Electronics Engineers Communications, Computers and Signal Processing.
Cruse H. 2009, Neural Networks as Cybernetic Systems, Brains, Minds & Media, 2nd and

revised ed., Department of Biological Cybernetics and Theoretical Biology, Stuttgart,
Thieme.

Edelman G. 1987, Neural Darwinism. The Theory of Neuronal Group Selection, New York,
Basic Books.

Falconer K.J. 1985, The Geometry of Fractal Sets, Cambridge, Cambridge University Press.
Farkaš I., Miikkulainen R. 1999, Modeling the self-organization of directional selectivity in

the primary visual cortex, in Proceedings of ICANN ’99 (Edinburgh, Scotland 1999),
Berlin-New York, Springer, 251-256.

Fiszelew A., Britos P., Ochoa A., Merlino H., Fernández E., García-Martínez R. 2007,
Finding Optimal Neural Network  Architecture Using Genetic Algorithms, «Research
in Computing Science», 27, 15-24.

Gowdy J., Pomerleau D.A., Thorpe C.E. 1991, Combining artificial neural networks and
symbolic processing for autonomous robot guidance, «Engineering Applications of
Artificial Intelligence», 4/4, 279-291.

Grossberg S. 1987, Competitive Learning: From Interactive Activation to Adaptive Resonance,
«Cognitive Science», 11, 23-63.

Guckenheimer J., Holmes P. 1983, Nonlinear Oscillations, Dynamical Systems, and Bifur-
cations of Vector Fields, New York-Berlin, Springer.

Guégan D. 2009, Chaos in Economics and Finance, «Annual Reviews in Control», 33/1, 89-93.
Hagan M.T., Menhaj M.B. 1994, Training feedforward networks with the Marquardt

algorithm, in Institute of Electrical and Electronics Engineers Transactions on Neural
Networks, Vol. 5, Issue 6, 989-993.

Hebb D.O. 1949, Organization of Behavior, New York, Wiley.
Izhikevitch E.M., Edelman G.M. 2008, Large-Scale Model of Mammalian Thalamocortical

Systems, «Proceedings of the National Academy of Sciences of the United States of
America», 105, 3593-3598.

Jordan D. W., Smith P. 2007, Nonlinear Ordinary Differential Equations, Oxford, Oxford
University Press, 4th ed.

Khalil H.K. 2001, Nonlinear Systems, Prentice Hall.
Kohonen T. 1982, Self-Organized Formation of Topologically Correct Feature Maps, «Bio-

logical Cybernetics», 43/1, 59-69.
Le T.H. 2011, Applying Artificial Neural Networks for Face Recognition, «Advances in Arti-

ficial Neural Systems», Vol. 2011.
Levy D. 1994, Chaos Theory and Strategy: Theory, Application, and Managerial Implications,

«Strategic Management Journal», 15, 167-178.
Lorenz E. 1963, Deterministic non-periodic flow, «Journal of the Atmospheric Sciences»,

20/2, 130-141.
Marquardt D. 1963, An Algorithm for Least-Squares Estimation of Nonlinear Parameters,

«SIAM Journal on Applied Mathematics», 11/2, 431-441.
McCulloch W.S., Pitts W. 1943, A logical calculus of the ideas immanent in nervous

activity, «Bulletin of Mathematical Biophysics», 5, 115-133.
Migliore M., Cannia C., Lytton W.W., Markram H., Hines M.L. 2006, Parralel network

simulation with NEURON, «Journal of Computational Neuroscience», 21, 119-129.
Minsky M., Papert S.A. 1969, Perceptrons, Cambridge Ma., The MIT Press.

A. Londei

130

Montana D.J., Davis L. 1989, Training feedforward neural networks using genetic algorith-
ms, in Proceedings at the 11th International Joint Conference on Artificial Intelligence
(IJCAI ’89) (Detroit 1989), Vol. 1, San Mateo California, Morgan Kaufmann, 762-767.

Novikoff A.B. 1962, On convergence proofs on perceptrons, in Proceedings of the Sympo-
sium on the Mathematical Theory of Automata, 12, New York, Polytechnic Institute
of Brooklyn, 615-622.

Olivetti-Belardinelli M. 1986, La costruzione della realtà, Torino, Bollati Boringhieri.
Penrose R. 1989, The Emperor’s New Mind: Concerning Computers, Minds and the Laws

of Physics, Oxford, Oxford University Press.
Pere Plaza i Font J., Régis D. 2006, Chaos Theory and its Application in Political Science,

in IPSA – AISP Congress (Fukuoka 2006).
Ramón y Cajál 1911, Histologie du système nerveux de l’homme et des vertébrés, Paris,

Maloine.
Ripley B.D. 1996, Pattern Recognition and Neural Networks, Cambridge, Cambridge Uni-

versity Press.
Robinson J.C. 2004, An Introduction to Ordinary Differential Equations, Cambridge, Cam-

bridge University Press.
Rosenblatt F. 1958, The Perceptron: A Probabilistic Model for Information Storage and

Organization in the Brain, «Psychological Review», 65/6, 386-408.
Ruelle D. 1989, Chaotic Evolution and Strange Attractors, Cambridge, Cambridge University

Press.
Rumelhart D.E., Hinton G.E., Williams R.J. 1986, Learning representations by back-

propagating errors, «Nature» 323/6088, 533-536.
Sporns O., Tononi G., Edelman G.M. 2000, Connectivity and complexity: the relationship

between neuroanatomy and brain dynamics, «Neural Networks», 13, 909-922.
Stone L., Ezrati S. 1996, Chaos, Cycles and Spatiotemporal Dynamics in Plant Ecology,

«Journal of Ecology», 84/2, 279-291.
Weaver W. 1948, Science and Complexity, «American Scientist», 36/4, 536-544.
White H. 1988, Economic prediction using neural networks: the case of IBM daily stock

returns, in Institute of Electrical and Electronics Engineers International Conference
on Neural Networks, 451-458.

Widrow B., Hoff M.E. 1960, Adaptive switching circuits, in 1960 IRE WESCON Conven-
tion Record, part 4, 96-104.

Zhang B.-T., Mühlenbein H. 1993, Evolving Optimal Neural Networks Using Genetic
Algorithms with Occam’s Razor, «Complex Systems», 7/3, 199-220.

Abstract

Understanding the world around us is usually a hard task. All dynamically evolving phe-
nomena in the natural world are produced by a strong interaction among a great number of causes
and, often, only a few amounts of them are visible or measurable. Moreover, the phenomena may
be so widely distributed over space and time, like the weather evolution, that only a small number
of measurements can be taken, making the understanding of the overall system difficult and ap-
proximated. Some characteristics of systems can produce a very strange behaviour, even when the
elements constituting the system are a small number. All these elements and their mutual interaction
can produce the so-called complexity. Artificial neural networks (ANNs) form an interesting class
of dynamic systems, as a paradigm of natural and spontaneous computation. ANNs are founded
on bases inspired by the neurophysiological nature of neurons and their mutual connectivity. In
this paper the historical reasons that led to the former mathematical models of neuron and connec-
tionist topologies will be detailed. Over time, they have evolved through the feed-forward systems,
Self-Organizing Maps, the associative memories up to the latest models in artificial cerebral cortex.

