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BEYOND THE HISTOGRAM 
IMPROVED APPROACHES TO SIMPLE DATA DISPLAY IN 
ARCHAEOLOGY USING KERNEL DENSITY ESTIMATES 

1. INTRODUCTION 

Histograms are among the most widely used methods of data presenta­
tion in archaeology. 

They are a particular example of a density estimate and their appearance 
depends on both the choice of origin of the histogram and the width of the 
intervals used. The origin is the lower boundary of the first interval in the histo­
gram and it is assumed in what follows that the interval widths, also known as 
bin-widths, are equal. WHALLON (1987) has expressed concern about this de­
pendence, particularly since the choice of origin and bin-width may affect the 
archaeological condusions drawn from a histogram. 

As 0RTON (1988) noted, in commenting on Whallon's arride, alterna­
tives to the histogram that avoid some of their problems exist but have not been 
exploited by archaeologists. This remains the case. In another context S1LVERMAN 
(1993) has suggested that for comparative purposes- a common archaeologi­
cal application - histograms are usually inefficient, and better approaches exist. 

In the present paper an effective alternative to the histogram, kernel 
density estimation, is discussed and illustrated. SJLVERMAN's (1986) book helped 
popularise the ideas involved and an up-to-date account is available in WAND 
andjoNES (1995). Apart from our own work (BAXTER, BEARDAH 1995; BEARDAH, 
BAXTER 1995) we are not aware of applications of these ideas to archaeologi­
cal data presentation. 

Given the pervasiveness of the histogram in archaeological data pres­
entation archaeologists ought to be interested in these ideas. That this does 
nor seem to be so is, we suspect, a consequence of a lack of accessible soft­
ware to implement the methodology. Additionally, there are technical prob­
lems, concerning the choice of bin-width, that have only been resolved rela­
tively recendy. One of us (CCB) has developed a comprehensive set of rou­
tines within the MATLAB package that can carry out kernel density estima­
tion using che methodologies described in WAND andjoNES (1995). The present 
paper describes and illustrates some of these ideas. 

Our hope is that archaeologists will be convinced about che value of 
kernel density estimation for archaeological data presentation. While our 
software can be made freely available to anyone who is interested we recog­
nise that not everyone will have access to our resources (hardware and soft­
ware). lt is likely, however, that che methodology that we describe will be­
come increasingly available, and we hope that the present paper will encour-
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age archaeologists to experiment with it when it does so. 
In the next section we illustrate the ideas of kernel density estimation 

by example. 
Technical aspects are discussed informally in Section 3 and more math­

ematically in an appendix, where we concentrate on the potentially criticai 
choice of bin - or window - width. Some further illustrative examples are 
given in Section 4. For simplicity of illustration the paper concentrates on 
univariate kernel density estimation, which is likely to be of most immediate 
interest to archaeologists. Extensions, including adaptive estimates, bounded 
estimates and two dimensionai estimates are noted in the final section. 

2. INITIAL EXAMPLE 

To illustrate both the problerns with histograms and their resolution 
using kernel density estimation Figure 1 may be consulted. This is inspired by 
the example of WHALLON (1987) and was produced using the $-plus package 
using a routine given in VENABLES and RIPLEY (1994, 134-5). The histograms 
shown are based on the radii of 81 Danish Neolithic pots (MADSEN 1988, 18). 
In each case a bin-width of 1.5 is used; the origin of the first bin is 2.9 for the 
first histogram and increases by incrernents of 0.3 thereafter. 

The appearance of the histograrn is dearly sensitive to the choice of origin. 
For exarnple, in the fourth histogram the distribution is relatively uniform over 
the approximate range 4-11, contrasting with the dear peak in the second histogram. 

The final diagram in the figure is the average of the five histograms, 
and is an example of an average shifted histograms (ASH) (Scon 1992). In 
contrast to the histograms its appearance does not depend on a particular 
choice of origin. It does depend on the choice of bin-width and, while smoother 
than the histograms, is not as smooth as we would like. 

The ASH can be regarded as an approximation to a kernel density esti­
mate (KDE) and provides one way of calculating a KDE. At their simplest 
KDEs can be thought of as providing smoothed versions of histograms that 
are dependent on bin-width but not on choice of origin. The smoothness is 
an advantage from a presentational viewpoint and makes it easier to compare 
severa] histograms. The main problem in practice is to obtain a sufficiently 
smooth representation of the data while also retaining its main features. In 
Fig. 1, for example, there appears to be a secondary mode at about 13 but 
this might disappear ifa larger bin-width were used. The choice of bin-width 
is clearly criticai. In our previous work (e.g. BEARDAH, BAXTER 1995) we have 
chosen the bin-width (or window-width as it is called) subjectively, taking as 
a starting point an estimate that tends to over-smooth the data and systemati­
cally reducing this value thereafter. More recently we have incorporated a 
range of methods for automatic choice of window-width into the MATLAB 
routines that have been developed by the second author. The underlying ideas 
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Fig. 1 - Five 'shifted' histograms and their average for the radii of 81 Danish Neolithic pots. 

are described and illustrated in the next two sections. 

3. UN!VARIATE KERNEL DENSITY ESTIMATE$ 

lt is possible to think of KDEs in different ways. In the previous section 
the KDE was presented as the average of a set of shifted histograms. An 
alternative viewpoint is as follows. 

Given n points X1, X2, ... , Xn situated on a line a KDE can be obtained 
by placing a 'bump' at each point and then summing the height of each bump 
at each point on theX-axis. The shape of the bump is defined by a mathematical 
function, the kernel K(x), that integrates to 1. The spread of the bump is 
determined by a window- or band-width, h, that is analogous to the bin­
width of a histogram. The kernel is usually a symmetric probability density 
function. The KDE is usually insensitive to the choice of kernel so that in 
what follows the normai density function is assumed. 

Mathematically, this gives the KDE as 
"' n )(; 
f(x) =l... l:K~) (1) 

,.. nh•~ I h 
where f(x) is an estimate of the density underlying the data. 
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Compared to the histogram the shape of f(x) does not depend upon the 
choice of origin, but is affected by the bandwidth h. Large values of h over -
smooth, while small values under-smooth the data. In the examples in BAXTER 
and BEARDAH (1995) the value of h was varied and the final estimate chosen 
subjectively. Following WAND and jONES (1995) our MATLAB routines have 
since been modified to allow a more 'objective' choice of h. 

The idea underlying the options available is as follows. We want a ker­
nel density estimate which is in some way 'optimai'. In other words we aim 
to choose a value of h which makes our KDE as 'dose' as possibie to the true 
underlying density, f(x) (which is unknown). The measure of 'closeness' is 
the asymptotic mean integrated square error (AMISE) which can be shown to 
have the form 

(2) 

Fuller details are given in the appendix. The termsA and B in equation 
(2) are dependent on the known kernel, while B is also dependent on the 
integrai of the squared second derivative of the unknown f(x) that we shall 
denote by R(f"). This last term can be thought of as measuring the 'rough­
ness' of the underlying density. 

Note that the two terms within equation (2) have opposite ef(ects as h 
is varied. For small h the first term (connected with the variance of f) is large 
while the second term (the bias) is small, and vice versa for iarge h. This 
illustrates the importance of h and also suggests that there is an optimai value 
of h which minimises the AMISE. This minimising value is easily shown to be 

h = f.A..i's 
AMI SE nB 

(3) 

This expression, which through B depends upon the second derivative 
of the unknown density f, is the starting point for many methods for auto­
matic seiection of h. 

lf it is assumed that the true density f is normai, equation (3) can be 
used to get the so-called normai scale estimate of hAMisE that we will denote by 
hNs (see the appendix). This depends on the standard deviation of the under­
lying density, which must be estimated. The normai scale estimate provides a 
quick and simply calculated value of h which works reasonabiy well if the 
data are dose to normai in structure. However, for non-normai data (exhib­
iting modes for example) hNs will tend to be too iarge and hence over-smooth. 

To avoid this problemone approach is to estimate the roughness of the 
true density, R(f "), on which B depends and use this in estimating h via (3 ). 
This approach gives rise to a famiiy of direct plug-in (DPI) estimates that are 
used in the examples of the next section. Details are given in the appendix. 
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The roughness, R(f"), can be written in terms of the fourth derivative 
of f. An estimate of this depends on the sixth derivative, however; while an 
estimate of the sixth derivative depends on the eighth derivative and so on. 
These derivatives are unknown, but functions of them can be estimated by 
using the normai scale rule, for example. 

lf we choose to estimate (a function of) the sixth derivative and work 
backwards from there we get the so-called 1-stage direct plug-in (DPl-1) band­
width estimator. lf we begin by estimating a function of the eighth derivative 
and working back from there a 2-stage DPI estimate is obtained, and so on. 

Repeatedly taking simulated samples from a known density can show 
the effect of varying the number of stages in the DPI method. Such studies 
show that while the average value of h so obtained becomes closer to the true 
oprimal hMI~E value as the number of stages is increased, the variability of h also 
increases. Again we have a trade off between bias and variance. W AND and 
jONES (1995) suggest that the 2-stage method provides the best compromise. 

In the MATLAB routines written by the second author DPI-1, DPI-2 
and DPI-3 estimates are available as well as the normai scale rule estimator. 
Relateci to the DPI estimates and also available is thesolve the equation (STE) 
method. The essence of this approach is that an initial estimate of roughness 
is made, allowing an initial estimate of h. The associated estimate of f allows 
the roughness, and hence h, to be re-estimated. The process is repeated until 
h converges. 

4. FuRTHER EXAMPLES 

As a first illustration of the ideas of the previous section consider Fig. 
2. This is based on the rim diameters of 60 Bronze Age ltalian cups. The data 
is given by BAXTER (1994, 233-4) and is a subset of materiai originally pub­
lished by LuKESH and HowE (1978). 

Four estimates are shown with their associated values of h; these are 
the normai scale method and DPI-1, 2 and 3. These last three methods show 
that the data are clearly tri-modal, with the final mode a rather small one. As 
we move from DPI-1 to DPI-3 the tendency is for h to decrease and for the 
modes and troughs to be accentuated. The normai scale rule smooths the 
data too much so that the clear division between the first two modes is ob­
scured and the third mode is missed. 

To illustrate a type of use where KDEs may be particularly valuable 
consider Figs. 3 and 4. Fig. 3 shows histograms of the percentage content of 
calcium oxide in specimens of medieval French glass from four sites. The 
data are a subset of that given by BARRERA and VELDE (1989) and their site 
numbering is used. While it is of substantive interest to look at the distribu­
tion of calcium oxide, since this can reflect different glass-making traditions, 
the main point about the present example is that it typifies many such ar-
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Fig. 2 - Four different h selection strategies generating KDEs based upon data representing 
the diamerers of 60 Bronze Age cups from ltaly. 
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chaeological uses where histograms are used for comparative purposes. 
To facilitate comparison scales are the same in each histogram. Abso­

lute numbers have been plotted, though relative frequencies might equally 
well have been used. 

Comparisons reading down the page and within a column are straight­
forward; for example, it is clear that the calcium concentration of specimens 
from site 9 are typically greater than for site 2. Effecting comparisons reading 
across the page, or diagonally is much less straightforward, though it can be 
clone, and difficulties of comparison would be magnified as the number of histo­
grams increases (this is a small example compared with some in the literature). 

A better, and potentially space-saving, way of effecting comparisons is 
shown in Fig. 4 where STE density estimates for the four histograms are super­
imposed (a relative frequency scale is also used). Comparisons are now much 
more direct and easy to make. Multi-modality is evidem for some of the sites and 
the generally higher content of calcium in specimens from site 9 is obvious. 
The wider spread of values from site 1, which is also bi-modal, can be seen. 

There is, of course, a limit to the number of estimates that can be use­
fully superimposed before the graph becomes too crowded. For exploratory 
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Fig. 4 - KDEs showing che disttibution of calcium in spedmens of glass from four French sites. 
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work the colours available with MA TLAB mean that more estimates can be 
superimposed and compared than one might wish to publish when restricted 
to black-and-white. We note also, in passing, that box-and-whisker plots are 
often used to effect comparisons between distributions (CLEVELAND 1993). 
They are not suitable in the present case because notali distributions are uni­
modal. 

5. EXTENSIONS 

This paper has deliberately concentrated on univariate examples, which 
commonly arise in archaeology and where the advantages of kernel density 
estimates are, we hope, obvious. The MATLAB routines that have been de­
veloped can also handle bounded data where, for example, data are non­
negative so that the KDE should be zero for negative values, and adaptive 
estimati on (analogous to the use of variable bin-widths) where h can vary and 
is typically greater in less dense areas of the data space. 

The most productive extension of the univariate KDE for archaeolo­
gists is likely to be to the bivariate case for which histograms, though occa­
sionally presented, are unwieldy and difficult to interpret. The mathematical 
development is straightforward, although theory for the optimal choice of 
window-widths is less advanced than that for the univariate case. 

BAXTER and BEARDAH (1995) have presented a successful application, 
based on bivariate plotting of the first two principal components from an 
analysis of glass compositions, in which the existence of three groups was 
cl.early evident. The methodology is most useful for large data sets, where 
conventional two-dimensional plots are too dense for any .patterns to be eas­
ily seen. Another potential area of application would be to the analysis of co­
ordinates of finds, of the kind that are used in spatial k-means clustering for 
example (BAXTER 1994, 148-9). 

BAXTER and BEARDAH (1995) also exploit the use of contouring, based 
on work by BowMAN and FosTER (1993). Bivariate kernel density estimates 
lend themselves naturally to contouring so that, for example, it is possible to 
highlight for subsequent interpretation - the densest parts of a plot. Ifa data 
set can be divided into sub-groups, by context or period for example, it is 
possible to plot selected contours for each sub-group separately in order to 
examine their similarities and differences. An assessment of the potential of 
these possibilities for archaeology awaits the wider exploitation of the meth­
odologies that we have oudined. 
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A. TECHNICAL APPENDIX 

Several methods of objectively estimating h are discussed by WAND and 
jONES (1995) andare implemented in our MATLAB routines. A brief techni­
cal account of some of these methods follows. 

A.1 NORMAL SCALE SELECTION OF h 

The asymptotic mean integrated square error (AMISE) in equation (2) 
is giv~n more fully by 

where 

AMI SE(i) = _!_R(I<) + ~h4µ2(I<)2 R(!"), 
nh 4 

R(I<) = f I<(x)2 dx= 1 
ire~ 
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and 

for the normai kernel. 

Jt2(/\)= f x2 K(x)dx= 1/(2,,fi) 
lreR 

The AMISE is a large sample approximation to the less easily manipu­
lated mean integrated square error (MISE), 

M ISE(f) =E j(}(x) - J(x))2 dx. 
(4) 

The minimising value of equation (3) is written more fully as 

[ 
R(K) ] i/s 

hAM !SE = µ2( I<)2 R(f")n 

Assuming that the true density f is normai with variance a2- leads to the nor­
mai scale estimate of h AMtsE.> given by 

h - [8y'irR(K)] i/s. 
NS - 3µ2(K)2n u, 

where a is an estimate of s, the unknown standard deviationof f. If the 
normai kernel is used this reduces to the simple formula 

hNs = l.06n- 1! 5a-. 

A.2 PLUG-IN SELECTION OF h 

Plug-in methods represent an improvement over the normai scale rule 
since they estimate R(f") for the true density rather than assuming that the 
true density is normai. To see how this is clone we note that R(f" ) can be 
written as 

R(f") = f/J4 = { J!4l(x)f{x) dx 
l.:ER 

where f 4>(x) is the fourth derivative of f(x). 
This means that equation (3) can be written as 

[ 
R(J() ] 1/s 

hAMISE = µ
2
(f<)21/J

4
n 

(5) 

and hence that h AMISE can be approximated accurately if a good estimate 
of 1f14 is available. Since lf/4 =E(f4l(X)), a natural estimator for 1f14 is 

n 

~4(g) = n - 1 L j!4l(X;), (6) 
i = I 
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where f is a KDE based upon a smoothing parameter g. In addition to pro­
viding more detail on the above, WAND andjONES (1995) show that the opti­
mal value of g (minimising the mean square error) is given by 

- [ 2J<(4)(Q) ] 1/7 (7) 
9AMSE - -µ2(I<)l/lan 

Unfortunately, this expression for g depends upon 

1/Js= [ J16l(x)f(x)dx 
lrER 

which in turn depends upon the unknown density f. Furthermore, estimating 
l/f

6 
by fpJg) (defined analogously to (6)) will not help as its optimal band­

width g (defined in a manner similar to (7)) depends upon l/f8, and so on. 
We can get around this problem by initially using a quick and simple h 

selection strategy such as the normai scale rule to estimate g and hence calcu­
late l/f

6
• By assuming that f is normai with variance cr2, it easily shown that 

(-1 y12r! 
'I/Jr= (2u)•+•(r/2)!..j1r" (B) 

where r is even. Therefore, the so-called 1-stage direct plug-in (DPI) band­
width selector consists of 

1. Estimating l/f
6 

via (8) with a suitable estimate, & of a. 
2. Evaluating gAMSE via (7). 
3. Estimating l/f4 via (6), where g = gAMsE· 

The DPI technique can be extended to 2 stages by initially estimating 
I/fil with a normai scale rule (i.e. using equation (8)), followed by estimation 
o l/f

6 
and finally 1/1, (see WAND andjONES 1995, section 3.6 for details). The 

extension to a still higher number of stages is obvious. Also, note that the 0-
stage DPI method (where (8) is used to directly estimate l/f4 and (5) to esti­
mate h) is equivalent to the normai scale rule. 

A.3 SOLVE THE EQUATION METHODS FOR THE SELECTION OF h 

These methods are similar to the DPI approach, but take one step fur­
ther by creating an iterative process with the 'optimal' h value as the soluti on 
of the iteration. The simplest such method is that of Scorr, TAPIA and THOMPSON 
(1977) which again takes equation (3) as its starting point. Specifically, equa­
tion (4) can be written as 

In other words a product of two terms, the first of which is a function of the 
kernel only and a second term which depends upon (the second derivati~e 
of) f. lf we guess a value, h

0
, for the band-width and use it to forma KDE, (0 , 
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then we can calculate a new, hopefully better, value h 
1 

via 
h1 = o(l<)f3(i0 )n-115• 

It is clear that this idea can be extended to an iteration whereby 

h;+1 = o(I<){3{j;)n-•l5 

fori= O, 1, ... and h0 is an initial guess for the band-width. Each KDE, f, is 
calculated using band-width hi' 

More sophisticatedsolve the equation (STE) rules are explained in W AND 

andjONES. Essentially, such methods are based upon an iteration of the form 

[ 
R(J<) ] 1/s 

h;+i = µ1(1<)2,J,.(g(h;))n 
(9) 

where the band-width g used to calculate Y,4 is a function of h .. Put simply, 
these methods take a value of h . (initially a guess h0), use h; t~ calculate a 
value of g which is used to caku1ate a new, hopefully better, value of h, h;+i 
via (9). The process is repeated to convergence, that is until h; and hi+t are 
sufficiendy dose together. 

A.4 C0Ncws10Ns 

We have seen that the DPI methods essentially provide an explicit for­
mula for an 'optimal' band-width value. Solve the equation methods findh as 
the solution of an iteration. Other methods not discussed here, such as cross­
validation (CV) techniques, rely upon minimising an often expensive to cal­
culate objective function. Therefore it is no surprise that in terms of ease of 
implementation, the DPI and STE methods are rather more convenient than 
CV methods. In terms of performance Wand and Jones recommend 2-stage 
DPI or STE methods as generally better than CV variants, with the exception 
of che smoothed cross validation method (which is in some ways a hybrid 
between DPI and CV). Ali of these techniques have been implemented in our 
MA TLAB routines so direct comparisons can be made. 

ABSTRACT 

The histogram is one of the most widcly used descripcivc scatiscical techniques in 
archaeology, but suffers from a numbcr of well known problems. These include the 
dependence of its appearance on thc choicc of origin and interval width. Kernel density 
estimates provide an alternative to the histogram and avoid some of ics problems. Thcy 
have been little used in archaeology, probably because suitable software has not been 
widely available. We illustrate some of the advantaçes of kcrnel density estimates through 
severa] simple examples. Computacion was done usmg che MATLAB package and routines 
written by the second author that are freely available. One issue in che use of kcrncl 
density estimates concerns a choice analogous to that of the incerval width fora histogram. 
Our routines implement severa! approaches that are discussed in an appendix. 
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