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INTEGRATING POINT PATTERN ANALYSIS  
AND LOGISTIC REGRESSION APPROACHES FOR EXPLORING 

THE SETTLEMENT PATTERN OF THE VERSILIA  
AND GARFAGNANA MOUNTAINS IN ROMAN TIMES

1.  Introduction

Mountain archaeology has a long tradition of study and in recent years 
new methodologies and theories for studying these landscapes have emerged, 
also thanks to the widespread development and use of digital technologies for 
the management of big datasets. Archaeologists have regained interest in this 
type of environment (Tzortzis et al. 2010a) and, over the years, the number 
of studies investigating highlands with multiscale and interdisciplinary ap-
proaches has increased considerably, shedding new light on the dynamics of 
mountain’s communities (Della Casa 2010; Carrer 2013; Migliavacca et 
al. 2021; Visentin, Carrer 2017). Roman archaeology has long underesti-
mated the phenomenon of organising, managing, and settling highland areas, 
focusing more on the rural settlements in the lowlands, such as farms and 
villae. Nevertheless, interest in settlement dynamics of mountain territories 
has increased in recent years (Mocci et al. 2010).

Renewed efforts aimed at systematically acquiring new data using tradi-
tional methodologies or developing new collection methodologies have been 
more rarely accompanied by a review and digitization of legacy data. Since 
2011, the MAPPA Laboratory of the University of Pisa has developed a set 
of tools for digitizing and managing archaeological legacy data (Anichini 
et al. 2012), starting from the urban area of Pisa and then progressively ex-
panding the area of interest to cover a large part of northern Tuscany. Two 
recent projects focused on the analysis of the cities and territories of Pisa and 
Lucca in Roman times have systematically collected, digitised, and managed 
legacy data, both published and preserved in the Superintendencies’ archives. 
On each side, the lack of systematic investigation in the vast mountainous 
territories of Versilia and Garfagnana emerged, despite traces of evanescent 
frequentations seem to indicate a settlement pattern of undoubted interest. 

Nevertheless, some studies have had the great merit of recovering and 
contextualising isolated finds − often the result of random discoveries − in a 
broader framework, relating them to major urban centres, road infrastruc-
tures, and silvo-pastoral agricultural practices (Menchelli 1991; Ciampol-
trini 2003, 2006; Fabiani 2006). Similarly, human-environment relationships 
in historical times have been studied, especially focusing on the plains (Bini et 
al. 2020). So far, however, this territory has never been analysed as a whole, a 
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geo-referenced picture of the archaeological record was missing, and the lack 
of specific analyses of the settlement-environment relationship prevented from 
identifying and explaining large-scale settlement patterns. It is therefore this 
gap that the present study will attempt to fill, integrating the results of Point 
Pattern Analysis and Logistic Regression approaches to evaluate settlement 
dynamics in relation to this specific environment, and finally create a predictive 
map. Indeed, spatial and computational analysis help to identify patterns in 
big and diverse datasets and are used to assess representativity and biases in 
data. Statistical methods and predictive modelling can be used to mitigate 
these biases and restore realistic images of the human-environment dialectic 
in the formation of mountain landscapes (Kempf, Weaverdyck 2023). 

2.  Background 

2.1  Study area

The study area comprises the mountain district of Versilia and Garfa-
gnana (Lucca, north-western Tuscany) (Fig. 1). Versilia is a territorial district 
in north-western Tuscany between the Apuan Alps mountain ridge and the 
Tyrrhenian coast, bordered to the N by the Seravezza River and to the S by 
Forte del Motrone, although usually the territory also includes the Camaiore 
basin and the coastal plain extending to Viareggio. The narrow plain is 
morphologically homogeneous and gently sloping towards the sea, generally 
standing at elevations slightly above or below zero. The coastal ridge of the 
Apuan Alps and Mount d’Oltre Serchio reaches higher altitudes in the N, 
up to 900-1000 m, and progressively less marked towards the S, where it is 
around 200-400 m. The reliefs delimit the Versilia plain with steep slopes 
or wide alluvial conoids at the downstream outlet of the numerous streams. 
Most of the watercourses are torrential (Versilia, Cinquale, Camaiore Ditch-
es, Motrone, Viareggio Canal), and relatively few are not overly affected by 
seasonal variations in rainfall, such as the Frigido River, Serchio River, and 
Magra River (Devoti et al. 2003, 73-76; Fabiani 2006, 19). Garfagnana 
stretches from the eastern ridge of the Apuan Alps to the crest line of the Ap-
ennine and between the Magra valley to the N and the plain of Lucca to the S.

From a geomorphological point of view, the eastern Apuan ridge is 
characterised by extensive rock formations of terrigenous nature that have 
produced less marked slopes than the Versilia side (Carmignani et al. 1978). 
The hydrographic evolution of the Serchio River passed through a Plio-Pleisto-
cene fluvial-lacustrine phase with the development of intravalley plains where 
the resumption of erosive phenomena on alluvial deposits gave rise to vast 
terraced forms (Boccaletti et al. 1980; Castaldini et al. 1998, 416-417).

The highest peaks are concentrated in the northern part: to the W, Mt. 
Pisanino (1947 m), Mt. Cavallo (1895 m), and Mt. Tambura (1891 m), while 
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to the E, several peaks rise above 1800 m (Cima Belfiore 1840 m, Mt. Prato 
2054 m, Mt. Giovo 1991 m, Corno alle Scale 1945 m) distributed along the 
entire length of the watershed with the Po side. Between the two mountain 
ranges lies the valley of the Serchio River. The shaft of the valley up to the 
confluence of the Lima stream − the Serchio’s main tributary − runs NW-SE, 
thus parallel to the coastline and the Apuan massif. 

The altitude of the valley varies from 450 m a.s.l. at Piazza al Serchio 
− where the various branches into which the river divides (Serchio di Sorag-
gio, di Sillano, di Gramolazzo) converge − to 220 m a.s.l. at Castelnuovo di 
Garfagnana, and 100 m a.s.l at Bagni di Lucca.

2.2  Archaeological background

The geomorphological conformation of the mountainous terrain and 
the dense ground cover make the internal areas difficult to access. Further-
more, the extensive abandonment of agricultural practices after World War II 
(Arnaez et al. 2011; Modica et al. 2017) makes ploughing rare, limiting the 
possibility of recognizing surface scattering. Over time, several archaeological 
features have been reported in these territories; however, most of these are 

Fig. 1 − Study area and archaeological finds used in this research work. 



90

S. Basile, A. Campus

the result of random discoveries or the activity of local enthusiasts and often 
limited to out-of-context pottery fragments. Studies on long-term landscape 
and settlement dynamics of these mountains are rare (Ciampoltrini 2003) 
and archaeological evidence of the Roman period, often related to seasonal 
activities, has often found only marginal space in the study of general settle-
ment patterns (Giannini 2005; Ciampoltrini 2006). 

Frequently, random finds are in fact the only evidence upon which a 
synthesis of human presence in the area can be based (Menchelli 1991, 
387-388). In these cases, the partial or sketchy documentation often pre-
vents a precise location of the finds, the lack of stratigraphic data frequently 
makes it impossible to specify the contexts of discovery and, in some cases, 
the materials found are lost without any proper study.

The non-verifiability of much of the available data entails an undeniable 
reliability issue of the archaeological information, leading to a sampling bias 
that must necessarily be considered in the analysis and interpretation processes. 
Nevertheless, the georeferencing of all known archaeological data for these 
territories provides, for the first time, an assessment of the actual density of the 
archaeological record in the highlands, which appears to be much higher than 
expected for marginal areas. These endemic uncertainties of the archaeological 
record led previous studies to abandon any attempts to read the settlement pat-
tern of the mountain territory in its informative completeness and its connection 
with the other landscape constituents. This study stems from these reflections 
and aims to, at the very least, begin to fill this gap.

3.  Materials and methods

3.1  Archaeological dataset and co-variables

The dataset derives from the collection, digitisation and systematisation 
of data performed as part of broader projects to analyse the settlement patterns 
of the cities and territories of Pisae and Luca in the Roman period. During 
these projects, 1026 archaeological intervention records and more than 1420 
finds were catalogued for the Pisae territory (Campus 2022) and 427 inter-
vention records, for a total of 1196 finds for Luca’s territory (Basile 2022a). 
An ‘intervention’ is every single action carried out in a specific location, from 
excavations and surveys to remote sensing, cores, random findings, and in-
spections by Superintendence. ‘Finds’ are classified with an increasing level of 
abstraction, from the traces in the field to their categorization into functional 
macro typologies (for a more detailed description of ‘interventions’ and ‘finds’ 
see Anichini, Gattiglia 2012). Given the purpose of the research, only records 
falling in the hilly and mountainous areas of Versilia and Garfagnana were con-
sidered in this study. Therefore, a target area was prepared using the contour 
line tool, selecting the portion of the territory within the isohypse of 50 m a.s.l. 
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The study area thus selected covers approximately 1574 km² and 
includes 78 finds, then reduced to 55 by using the R function remove.dupli-
cates to find and delete points with the same coordinates (Fig. 1). The choice 
of independent variables is a crucial preliminary step in the creation of the 
model. Considering that this study focuses on the distribution of settlement 
in a specific mountainous environment, we deliberately decided to select as 
predictor for our models only those environmental variables that could have 
an influence on the settlement pattern, leaving out cultural variables such as 
toponymy or proximity to mountain passes and routes.

Among those selected are geomorphological and pedological variables. 
Geomorphological variables include Digital Terrain Model (DTM), Slope 
(Sl) Sine and Cosine of the Aspect (sin_aspect, cos_aspect), Profile Curvature 
(curv), and Tangent Curvature (curv_tan). Pedological variables derived from 
the Tuscany Region Pedological Database1 include land use capacities such as 
Drainage (Dre), Erosion (Eros), Chemical Fertility (Fert), Landslide (Slide), 
and the percentage composition of soils: Clay (Cla), Sand (San), Silt (Sil), 
Pebbles (Peb), Rockiness (Rock), Organic Substrate (Sostorg). Furthermore, 
we also considered Distance from major waterways (St_dist), Total Solar 
Exposure, and Exposure Time measured at the summer (Sotosu and Sotisu) 
and winter (Sotowi and Sotiwi) solstices as possible predictors. 

In a first step, the interaction between archaeological finds and varia-
bles were analysed studying the first-order effects of the point pattern. In a 
second phase, two regression models were constructed with selected varia-
bles using different approaches to create a predictive map of the area: a first 
model (Model_1a) only considers variables selected after the Point Pattern 
Analysis; a second (Model_2) uses variables selected and combined manually 
through an assessment of P-values and Akaike Information Criterion (AIC) 
of various models.

3.2  Point Pattern Analysis

Point Pattern Analysis is a method increasingly used in archaeology 
to provide a reliable statistical assessment of landscape and settlement dy-
namics (Eve, Crema 2014; Brandolini, Carrer 2020; Costanzo et al. 
2021; Basile 2022b; Campus 2022). Point Pattern Analysis generally refers 
to a suite of statistical methods designed to assess the potentially complex 
spatial relationships that might exist among entities that can be described as 
points. The underlying processes behind a given point pattern are determined 
either by interaction with a range of exogenous influences (first-order effects 
or induced spatial dependency) or by intrinsic factors to the phenomena of 
interest (second-order effects or inherent spatial dependency) (Crema 2020, 
158). In this paper, Point Pattern Analysis performed in R using the spat-
stat package (Baddeley et al. 2021) will focus on attempting to formally 
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model the exogenous environmental variables that may have induced spatial 
dependence of the study area evidence. In other words, we will study the 
large-scale spatial interaction to determine whether the density of the point 
pattern in the study area, proportional to the intensity of the underlying 
process, is stationary and isotropic (Homogeneous Poisson Process - HPP) or 
spatially variable (Inhomogeneous Poisson Process - IPP), assessing whether 
an inhomogeneous model describes spatial variability more accurately than 
the stationary homogeneous Poisson model by fitting external covariates that 
might influence the distribution of spatial events (Brandolini, Carrer 2020, 
5). A popular method for summarizing the first-order intensity of a point 
pattern is to create a density surface using Kernel Density Estimation, which 
computes a continuous approximation of the distribution by weighting events 
relative to their distance from the point from which the intensity is estimated 
(Conolly, Lake 2006, 175-177; Bevan 2020, 63-64).

As is clearly shown in the figure (Fig. 2), the density of points in the 
study area is variable and inhomogeneous, showing a greater number of 
points in particular areas, such as in the foothills. Following the principle of 
parsimony, the model was created by selecting the combination of covariates 
that minimises the Akaike Information Criterion (AIC) values to simplify the 
model without affecting performance. In this way, model 1 was created, the 
results of which are presented in the table (Tab. 1).

Fig. 2 − Kernel Density Estimation of the Roman period archaeological finds 
within the study area. 
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3.3  Logistic Regression Modelling

Regression models are among the most widely used approaches in ar-
chaeology to predict the relationship between the probability of encountering 
an archaeological site and several independent variables. Logistic regression 
is used to specify a binary outcome (event/non-event, present/absent, large/
small, etc.): hence, logistic regression has mainly been used for the develop-
ment of predictive models on the location of archaeological sites, estimating 
the probability that a site is present in a particular study area (Carlson 
2017, 235; Nakoinz, Knitter 2018, 87-97). In our case, logistic regression 
was used to model the probability of encountering a frequented (event) or 
a non-frequented (non-event) area and to test the relationship between the 
presence of settlement elements and the covariables already considered for 
the Point Pattern Analysis. 

The 55 points of our dataset were considered as ‘events’, assigning each 
of them numerical value of 1. Considering the low density of investigation in 
the area, it was not possible to establish points or areas that could represent 
‘non-events’ with certainty. Therefore, 350 ‘non-event’ points representing a 
process of complete spatial randomness were obtained with the QGIS Random 
Points tool, resulting in a ratio of 1:6 between ‘events’ and ‘non-events’ entities, 
as already tested in archaeology (Wachtel 2018; Li et al. 2022). Although we 
are aware of the reduced representativeness of the dataset, the event/non-event 
ratio, more than the total number of measures, is the most relevant parameter 
for structuring a robust binomial model (King, Zeng 2001).

To avoid collinearity effects in the estimation of the coefficients, the cor-
relation between the predictors was assessed before the models were created 
by calculating the Pearson correlation index for each pair of variables (Fig. 3). 
A strong collinearity above the 0.7 threshold value (Alberti et al. 2018, 13) 
was thus established between some variables (positive: Sotiwi-Sotowi, Soti-
wi-Sotosu; negative: Sin-aspect-Sotiwi, Sin-aspect-Sotowi, Slope-Sotosu). Even 
though the two variables Slope and Total Summer Solar Exposure (Sotosu) 
have a coefficient of 0.71 – just above the threshold value – we still decided 

Tab. 1 − Coefficients of the Point Pattern Analysis. 
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not to exclude them from the model. In fact, in our interpretation, these 
could be two of the most influential factors in establishing the settled areas. 
Therefore, we were interested in assessing their true impact in predicting sites. 

The first model (Model 1a), created using the R glm function, only 
considers the variables already selected by the Point Pattern Analysis. Using 
the stepAIC function, a stepwise selection of these variables was performed 
to obtain the model with the best balance between likelihood and predictors, 
according to the principle of parsimony (for a similar procedure see: Basile, 
Carrer 2022, 71-73). The obtained model preserved 6 out of 10 variables: 
DTM, Slope, Cosine of Aspect, Tangent Curvature, Distance from main 
streams, and Organic Substrate (Tab. 2). Then, the influence of the interac-
tion between predictors on the model was tested by multiplying two or more 
variables to obtain two types of information: assessing the possibility of a 
strong dependence between variables − in which case one of the predictors 
would lose its importance in the model − and assessing whether the interac-
tion per se could be relevant for the model. In this way, we established that 

Fig. 3 − The Corrplot which shows collinearity among variables. 
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the interaction between Distance from main streams and Organic Substrate 
(St_dist:Sostorg) was particularly influential.

For comparison purposes, a second model (Model 2) was created by 
reconsidering all variables without the selection applied by the Point Pattern 
Analysis. After discarding Sin of Aspect (sin_aspect) and Solar Time and 
Total Exposure in winter (Sotiwi, Sotowi) due to their high collinearity, the 
following predictors were selected by applying the stepAIC function: DTM, 
Slope, Curvature, Tangent Curvature, Distance to main streams, Organic 
Substrate, Cosine of Aspect, Landslide, and Solar Exposure Time on the sum-
mer solstice (Tab. 2). As for Model 1a, we inspected the interaction among 
variables by multiplying them. In this case, the interaction between Organic 
Substrate and Cosine of Aspect (Sostorg:cos_aspect) is significant, therefore 
it was considered among the predictors.

As a first step in validating both models, using roc and ggroc functions 
(pROC package), Receiver Operator Characteristic (ROC) curves were plotted, 
to display the True Positive Rate (or Sensitivity) against False Positive Rate (or 
Specificity) (for a similar procedure see: Basile, Carrer 2022, 73). The former 
is the percentage of correctly predicted events, while the latter is the percent-
age of events incorrectly predicted as non-events. Furthermore, using the auc 
function, we calculated the Area Under the ROC Curve (AUC) to assess the 
reliability of the predictions. In a range from 0 to 1, the AUC value represents 
the probability that a random event is closer to 1 than a random non-event. 
Hence, values close to 1 indicate a high predictive capacity of the model, 
whereas values below 0.5 indicate low prediction reliability (Li et al. 2022, 8). 

A chi-square test was then performed subtracting the residual deviance 
from the null deviance and the residual degrees of freedom from the null de-
grees of freedom in order to compare the response of the models with only 
the intercept (null deviance), against the models that include the independent 

Tab. 2 − Coefficients of the Logistic Regression Models.
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variables (residual deviance) and thus determine whether the fitted models 
represent an improvement over the null hypothesis that the decrease in de-
viance is not significantly different from zero. Subsequently, a second test 
was performed comparing the residual deviance and the residual degrees of 
freedom, with the null hypothesis that the observed values differ significantly 
from fitted values (Carlson 2017, 237-238).

A series of automated and manual comparisons between true positive 
(tpr) and true negative (tpn) prediction rates were performed to establish a 
threshold value, to balance as best as possible the prediction for non-events 
and events. Finally, a cross table (Tab. 3) was created to compare the predic-
tions of the regression model with observed values (for a similar procedure: 
Campus 2022, 391-396).

The performance of the two models was finally compared, using Akaike 
information criterion (AIC), Schwarz’s Bayesian Information Criterion (BIC), 
and BIC weights. The AIC is normally used to compare alternative models, 
generally selecting the one with the lowest AIC value (Carlson 2017, 238). 
The BIC is calculated as the difference between the maximum likelihood of 
the model and the product of the covariates for the number of observations 
(points), so the lower the BIC, the better the model performance. The BIC 
weights are used to provide a normalised estimate of the relative performance 
of the two models (Brandolini, Carrer 2020, 8).

3.4  Predictive map

Using GRASS r.mapcalc function, raster maps of the selected covariates 
were weighted based on their regression coefficient and combined to produce 
a probability map representing the logarithm of the odds for each model:

Prob = Intercept+(coef. Covar1×covar1)+(coef.Covar2×Covar2)…

The probability map was then used for both models to obtain a predic-
tive map in which a value from 0.0 (non-event) to 1.0 (event) was assigned 
to each 20×20 m cell:

Pred = (exp(Prob))/(1+(exp(Prob)))

Tab. 3 − Cross tables of the observed values against 
the fitted values of the Logistic Regression Models.
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4.  Results and discussion 

Exploratory analysis such as Kernel Density Estimation (Fig. 2) demon-
strates the inhomogeneity of the distribution of archaeological evidence, 
concentrated on the foothills near the plain, where urban centres and road 
network were located. Point Pattern Analysis assesses the spatial dependence 
among points at various scales. The inhomogeneous L-function (Fig. 4) shows 
a significant aggregation of points – beyond the envelope interval – within 
2 km, probably due to the existence of areas with a higher density of finds, 
resulting in clusters that do not necessarily reflect the actual settlement dis-
tribution. On a larger scale, first-order processes – namely environmental 
features – explain the distribution of points (Model 1). Point Pattern Analysis 
coefficients show a significant direct correlation with Organic substrate, Land-
slides and Tangent Curvature, while Distance from streams and Total Solar 
Exposure in winter display a weaker direct correlation. A very weak inverse 
correlation with DTM and Total Solar Exposure in summer and a weak one 
with slope and erosion are observed. In contrast, the most significant inverse 
correlation is with Aspect Cosine.

Fig. 4 − Inhomogeneous L-function.
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As far as the regression models are concerned, in both models, variables 
with a significant inverse correlation and low P values are DTM, Slope, Cosine 
of Aspect (Tab. 2); while Distance from Streams and Organic Substrate have 
higher P values. Among the selected variables Tangent Curvature presents very 
high estimate coefficients, particularly affecting the predictions. Only Model 
2 considers Solar Exposure Time in summer, Landslide and Curvature – the 
latter of which has a particularly high estimate coefficient. Furthermore, Model 
1a considers the interaction between Distance from Streams and Organic 
Substrate (St_dist:Sostorg), and Model 2 the one between Organic Substrate 
and Cosine of Aspect (Sostorg:cos_aspect).

Chi-square tests prove that both models are acceptable and exhibit a 
significant correlation between the probability of encountering an event and 
the independent variables. In the first test, comparing the null deviance against 
the residual variance the p-values for both models are close to 0 (Model 1a: 
2.174182e-08; Model 2: 5.176584e-09); similarly, the second chi-square tests 
return values close to 1 (Model 1a: 0.9999996; Model 2: 0.9999999). We can 
therefore conclude that the fitted models provide a significant improvement 
over the null models. For both models, the Area Under the ROC Curve (AUC) 
values are around 0.75 (Model 1a: 0.754961; Model 2: 0.7695584), thus 
showing a similar predictive capability. Threshold values were selected by 
comparing true positive (tpr) and true negative (tpn) prediction rates, seeking 

Fig. 5 − Predictive map derived from Model 1a with locations mentioned in 
the text: L) Lucca; R) Ripafratta; M) Massaciuccoli; C) Camaiore Valley; P) 
Pietrasanta; S) Strettoia. 
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a value that balanced the predictions between ‘event’ and ‘non-event’ (Model 
1a: 0.08054071; Model 2: 0.1155059) (Tab. 3). 

Finally, both models have similar AIC values (Model 1a AIC = 292.7; 
Model 2 AIC = 296.1) and show similar reliability and prediction capability. 
In fact, the BIC scores show almost identical values (Model 1a BIC score = 
316.747; Model 2 BIC score = 316.092); the BIC weight is slightly higher 
for Model 2 (Model 1a BIC weight = 0.418; Model 2 BIC weight = 0.58); 
however, there are no substantial differences in reliability between models. 

The application of computational models and predictive analyses 
in archaeology – especially when human behaviour factors are involved – 
should always be paired with a contextual interpretation of the multiple 
factors interrelated. In the case of two equally reliable models with the same 
predictive capacity, the choice of the best model is a crucial step that falls 
on the researchers who read and interpret the results (Gillings et al. 2020, 
13). Although Model 1a has slightly lower performance, it was considered 
as more suitable for the construction of the predictive map. In fact, Model 
1a produces a more readable and higher detailed map (Fig. 5), and the se-
lected variables were derived from an additional Point Pattern process step 
that ensures the spatial dependence of the archaeological features with the 
environmental variables. Based on the considered variables, the predictive 
map confirms that the foothill area has suitable characteristics for permanent 
settlement, despite the study area excludes urban settlement and centuriated 

Fig. 6 − The north-western area of Model 1a predictive map with locations 
mentioned in the text: A) Antona; B) Mt. Altissimo; C) Foce di Mosceta; 
D) Vergheto; E) Mt. Brugiana.
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plain areas. The entire foothill strip tends to be above the threshold, as in the 
N-E of the plain of Lucca and between Ripafratta and Massaciuccoli. Values 
close to 1 are attested in Piana di Mommio and Santa Lucia at the Camaiore 
Valley entrance and the foothill to the N of Pietrasanta up to Strettoia at 
Lago di Porta. 

Inland, the entire Serchio Valley area is at medium-low values but still 
above the threshold. Going up in altitude and away from main waterways, 
values above the threshold decrease and the non-event areas increase propor-
tionally, especially along ridges and steepest and most exposed to the N areas. 
Nevertheless, event values are especially recorded in areas characterised by 
gentler slopes and exposed to the E-SE. Values close to 1 are located on the 
NE slope of Monte Altissimo at approximately 1000 m a.s.l. However, in this 
case, a prediction bias must be considered due to quarries that regularised 
slopes and mountain profiles over the centuries; therefore, predictions are 
probably overestimated. Plateaus with gentle slopes, such as the western side 
of Mt. Pania della Croce, near Foce di Mosceta, the area of Vergheto to the W 
of Mt. Tambura, the area of Antona, and the Mt. Brugiana at approximately 
800 m a.s.l, show more reliable values toward 1 (Fig. 6).

5.  Conclusion 

Predictive archaeological models are tools for projecting known patterns 
to different, unexplored locations in the landscape (Warren, Asch 2000, 6), 
with the aim of generating a spatial pattern that has predictive implications 
for future observations and, especially in archaeology, for predicting the 
location of evidence not yet observed (Wheatley, Gillings 2002, 161). 
In this study, we aimed to explore the settlement pattern of the Versilia and 
Garfagnana mountains provided by previous investigations in relation to 
environmental variables with the purpose of integrating the archaeological 
framework, clarifying human-environment dynamics and past landscape use, 
and directing new research in the area, such as the survey campaigns currently 
conducted by the MAPPA Lab (Dept. of Civilisations and Forms of Knowl-
edge, University of Pisa) within the ARAM (ARcheologie dell’Abbandono 
sulla Montagna di Mezzo) project. After investigating the spatial dependence 
of finds with environmental variables through Point Pattern Analysis, two 
predictive models were created. Given their equal robustness and reliability, 
the choice of the most fitting model to create the prediction map was then 
guided by the readability and interpretability of the output. 

The suitable characteristics of the foothills for permanent settlement are 
thus confirmed; as clearly evidenced by Kernel Density Estimation, it is here, 
moreover, that the greatest archaeological concentration occurs, close to the 
plain where urban centres and the main road network were located. In any 
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case, event values are also present in the innermost areas and at higher alti-
tudes, especially on the gentler, E-SE-facing slopes. Usually, predictive models 
in archaeology rest on the assumptions that settlement choices were strongly 
influenced or conditioned by the characteristics of the natural environment 
and that these environmental factors are represented, at least indirectly, in 
contemporary maps (Warren, Asch 2000, 6). For these reasons, the major 
criticism of predictive models is environmental determinism and predictive 
modelling of archaeological patterns is regarded as one of the most contro-
versial applications of computational archaeology (Wheatley, Gillings 
2002, 161). Critical issues and opportunities in the archaeological modelling 
process have long been discussed and emphasised (Kvamme 2006) and the 
importance of the researcher’s contextual interpretation and cross-validation 
of results are established. 

The probably overestimated predictions at the quarry areas, due to the 
regularisation of slopes and mountain profiles over the centuries, are a clear 
example of the possible distortion due to the use of environmental factors 
recorded in contemporary cartography. Particularly in the mountainous 
area, larger and permanent settlements are often more visible and therefore 
often represent the only features that allow for the development of settlement 
location models. A predictive model that can generate a spatial pattern with 
predictive implications provides greater awareness of the possible extension 
of the settlement pattern, human-environment dynamics, and past landscape 
use to direct future research and field validation on lesser-known areas.
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ABSTRACT

Mountain archaeology has a long research tradition and in recent years the number 
of studies on this topic has increased considerably, shedding new light on the dynamics of 
mountain’s communities. Versilia and Garfagnana districts (Lucca, north-western Tuscany) 
largely fall between the Apuan Alps and the Apennine ridge. Although these territories have 
never been systematically investigated, the collection of all available archaeological legacy data 
indicates a settlement pattern of undoubted interest for the Roman times. This paper aims 
at exploring the settlement pattern of these mountain territories, integrating Point Pattern 
Analysis and Logistic Regression to achieve a predictive map of archaeological presences and 
to analyse their interrelations with the environment. Analyses prove the spatial dependence 
of finds with geomorphological and pedological variables, but also with the distance to major 
watercourses and solar irradiation. Based on the considered variables, the predictive map 
confirms that the foothill and gentler slopes facing E-SE areas have suitable characteristics for 
permanent settlement. Moving towards the more inland and higher altitude territories, the non-
event areas increase proportionally, especially along the ridges, and the steeper, north-facing 
areas. Thus, the results make it possible to integrate the archaeological framework, clarifying 
human-environment dynamics, and directing new studies.
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