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DEFINING SOUTHERN ETRURIA FINAL BRONZE AGE 
SETTLEMENT MODELS USING AN INTEGRATED GIS  

AND MACHINE LEARNING APPROACH

1.  Introduction

Southern Etruria has been extensively studied in recent Italian protohis-
tory (di Gennaro 1979, 1982, 1986, 1988; Potter 1985; Negroni Catac-
chio 1995; Pacciarelli 2001; Belardelli et al. 2007; Schiappelli 2008; 
Barbaro 2010). In terms of historical reconstruction, this region is crucial 
during the transition between the Bronze and Iron Age (around 950/925 BC, 
Pacciarelli 2001, 67-69), when a significant change in settlement patterns 
occurred. The change entailed a transition from a polycentric village system, 
typical of the Bronze Age, to proto-urban centers (Peroni 1989, 2004; Bietti 
Sestieri 2010; Cardarelli 2018), sites of future Etruscan cities (Bartoloni 
1989, 2012; Pacciarelli 2001, 12).The study of the last phase of the Bronze 
Age (Final Bronze Age, 1150-950/925 BC, Pacciarelli 2001, 67-69) in this 
region contributes to our understanding of the reasons for this change.

The discovery and study of these contexts (primarily settlements) have 
been undertaken by the Roman protohistoric school and its scholars, who 
have developed a comprehensive framework for historical reconstruction 
(Schiappelli 2008, 21-28; Barbaro 2010, 17-19). The topographical and 
territorial study, the position of settlements and their relationship to the sur-
rounding area can be a valuable methodological support for the reconstruc-
tion of protohistoric society (Potter 1985, 65-106; Pacciarelli 2001, 71; 
di Gennaro 2010, 13-16). In this sense, digital analyses can be of valuable 
support: while GIS needs no introduction as its use in archaeology is almost 
customary by now (Scianna, Villa 2011), the application of Machine Learn-
ing (ML) is becoming more and more present in archaeology (Bickler 2021) 
thanks also to the availability of opensource and well-documented resources 
which have certainly enabled the integration of disciplines in recent years.

The aim of this paper is to propose an approach that combines GIS raster 
analysis with ML techniques to identify formal or quantitative characteristics 
of the Final Bronze Age (FBA) settlements in Southern Etruria. To achieve 
this goal, a specific pipeline is proposed, which includes raster morphological 
analyses, simulations and techniques derived from ML and data analysis. The 
characteristics of the FBA settlements will be defined through quantitative 
and reproducible raster analyses and compared with those derived from a 
simulation of random points within the same territory. This comparison will 
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help us distinguish between the common characteristics in the area and those 
that are specific to the FBA’s own settlement choices.

2.  Dataset

The territory of Southern Etruria is located between the Fiora valley to 
the W, Amiata Mount to the N, and the Tiber River to the E and S (Fig. 1b) 
(di Gennaro 1986, 7-8; Barbaro 2010, 19). It mainly falls within the 
present-day regions of Latium, Tuscany, and Umbria (Fig. 1a). B. Barba-
ro (2010) comprehensively analysed evidence about the region to create a 
cohesive picture. She extensively collected relevant archaeological evidence, 
resulting in a topographical classification of settlements (Barbaro 2010, 
27-35), a chronology based mainly on decorative elements (Barbaro 2010, 
71-118), and an extensive catalogue of settlements, hoards, and funerary areas 
(Barbaro 2010, 147-330). The commonly accepted settlement pattern in the 
region involves sites located on plateaus with very steep flanks, which are 
considered an effective form of natural defence (Pacciarelli 2001, 72-74; 

Fig. 1 – a) Territory of Southern Etruria with the current regional administrative 
boundaries; b) DEM of the territory of Southern Etruria. The boundaries and 
main geographical features mentioned in the text and the location of the city of 
Rome are indicated.
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Barbaro 2010, 27-36). These sites are typically 5-6 km apart and cover an 
average of 5 to 6 hectares (Cardarelli 2018, 374).

There are exceptions to this rule, such as perilacustrian settlements or 
settlements located in open positions (Barbaro 2010, 33-35). However, the 
‘natural defenced’ model is predominant: M. Pacciarelli (2001, 100) calcu-
lates that over 90% of FBA settlements (in a sample of 70 sites he analysed) 
are located on plateaus with very steep flanks. A. Schiappelli (2008) and 
B. Barbaro (2010) developed measures to quantify the ‘defensive potential’ 
of settlement contexts in their respective monographic works. In both cases, 
more than half of the settlements were attributed a high ‘defensive potential’.

Regarding funerary practices, burials consist of cremations within bi-
conical urns with covers. Grave goods are scarce, suggesting that the ritual 
followed extremely strict rules (De Angelis 2006). According to these con-
siderations, A. Cardarelli (2018, 375) describes this territorial organization 
as polycentric, with villages having similar socio-political structures and 
governed by elites in potential competition with each other.

The sites analysed in this study were drawn from the monographic work 
of B. Barbaro (2010). The data used includes settlement contexts, as classified 
in Barbaro’s work: those referred to as ‘settlement’ (insediamento) or ‘probable 
settlement’ (probabile insediamento) in the Barbaro 2010 classification and 
catalogue (Barbaro 2010, 147-330), for a total of 166 contexts (Fig. 2a). 
The sites were positioned as points in the UTM coordinates indicated by the 
author (Barbaro 2010, 150).

The analyses were performed using the Tinitaly DEM (https://tinitaly.
pi.ingv.it/), a digital terrain model with a resolution of 10 m. The cells 
W47070, W47075, W46570, W46575 and W46075 (https://tinitaly.pi.ingv.it/
Download_Area2.html) were combined into a single raster. The analysis area 
was generated by creating a circular buffer of 1 km around each site and using 
it to cut out the raster (Figs. 3, 4, 5). This resulted in a series of small, circular 
DEMs centred around each point. This procedure was mainly necessary to 
reduce the processing load without losing information by resampling the raster.

To identify the characteristics of the FBA settlements in Southern Etru-
ria, a simulation was conducted by placing random points within the same 
territory. The rationale behind this approach is as follows: if there is a specific 
settlement pattern in this region, as proposed by numerous authors, most ar-
chaeological sites should exhibit specific attributes. However, it is important 
to ensure that these attributes are not merely common features shared with 
the surrounding territory but are indeed unique to the settlement pattern. To 
address this issue, a comparison with random sites was performed. These 
simulated sites were distributed randomly over the territory to identify com-
mon characteristics, which can be considered as a sort of background noise. 
This comparison allowed for the identification of unique features specific to 

https://tinitaly.pi.ingv.it/
https://tinitaly.pi.ingv.it/
https://tinitaly.pi.ingv.it/Download_Area2.html
https://tinitaly.pi.ingv.it/Download_Area2.html
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the settlement pattern of the FBA. To position the random points, a delim-
itation polygon was created relative to the real archaeological contexts and 
the main bodies of water, such as the Sabatine Lake complex, Lake Bolsena 
and Lake Vico, were excluded from the polygon to prevent random points 
from ending up within these areas (Fig. 2b). Thus, random points were gen-
erated amounting to the same number of archaeological contexts (166), and 
randomly positioned within the polygon (Fig. 2c). This method allowed for 
a fair comparison between archaeological and simulated sites (Fig. 2d).

3.  Methods and tools

3.1  Raster analysis

To achieve the objectives of this study, various raster analyses were car-
ried out to identify features that can be used as predictors in the ML algorithm 
(Tab. 1). These predictors, developed using the open source GIS software SAGA 

Fig. 2 – a) Position of the 166 archaeological contexts within the database; 
b) definition of the delimitation polygon created from the archaeological 
contexts; c) random points within the delimitation polygon; d) archaeo-
logical contexts and random points compared.
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(https://saga-gis.sourceforge.io/), are grouped into macro-classes, including 
Morphometry (Fig. 3), Lighting and visibility (Fig. 4), Channels and hydrol-
ogy, and Terrain classification (Fig. 5). This division allows us to organise the 
results of the analyses and interpret their meaning in the context of the study. 
Each algorithm used returns a raster grid, and the results of the analysis can 
be either quantitative or continuous (Morphometry, Lighting and visibility, 
Channels and hydrology) or categorical (Terrain classification).

To prepare the data for analysis, each point was linked to the corre-
sponding raster value by a spatial join. This resulted in a multivariate dataset 

PREDICTOR TOOL
Morphometry 

Slope
Basic Terrain Analysis 1Aspect

Relative Slope Position
Normalised Height

Relative Heights and Slope Positions 2Standardised Height
Mid-slope Position
Terrain Ruggedness Index (TRI) Terrain Ruggedness Index 3

DEM None
Lighting and visibility 

Visible sky
Sky View Factor 4Sky View Factor

Average View Distance
Topographic Positive Openness 

Topographic Openness 5

Topographic Negative Openness 
Channels and hydrology 

Valley Depth
Basic terrain analysis1Channel Network Distance

Topographic Wetness Index (TWI)
Terrain classification 

TPI based Landforms TPI based Landforms 6

Geomorphons Geomorphons 7

1  https://saga-gis.sourceforge.io/saga_tool_doc/8.4.1/ta_compound_0.html.
2  https://saga-gis.sourceforge.io/saga_tool_doc/8.4.1/ta_morphometry_14.html.
3  https://saga-gis.sourceforge.io/saga_tool_doc/8.4.1/ta_morphometry_16.html.
4  https://saga-gis.sourceforge.io/saga_tool_doc/8.4.1/ta_lighting_3.html.
5  https://saga-gis.sourceforge.io/saga_tool_doc/8.4.1/ta_lighting_5.html.
6  https://saga-gis.sourceforge.io/saga_tool_doc/8.4.1/ta_morphometry_19.html: the tool 

returns the following values: 1: Streams; 2: Midslope Drainage; 3: Upland Drainage; 4: Valleys; 
5: Plains; 6: Open Slopes; 7: Upper Slopes; 8: Local Ridges; 9: Midslope Ridges; 10: High Ridges.

7  https://saga-gis.sourceforge.io/saga_tool_doc/8.4.1/ta_lighting_8.html: the tool returns the 
following values: 1: Flat; 2: Peak; 3: Ridge; 4: Shoulder; 5: Spur; 6: Slope; 7: Hollow; 8: Footslope; 
9: Valley; 10: Pit.

Tab. 1 – Table showing the various raster predictors divided by macroclass. The software tool used 
and its documentation are given in the footnotes.

https://saga-gis.sourceforge.io/
https://saga-gis.sourceforge.io/saga_tool_doc/8.4.1/ta_compound_0.html
https://saga-gis.sourceforge.io/saga_tool_doc/8.4.1/ta_morphometry_14.html
https://saga-gis.sourceforge.io/saga_tool_doc/8.4.1/ta_morphometry_16.html
https://saga-gis.sourceforge.io/saga_tool_doc/8.4.1/ta_lighting_3.html
https://saga-gis.sourceforge.io/saga_tool_doc/8.4.1/ta_lighting_5.html
https://saga-gis.sourceforge.io/saga_tool_doc/8.4.1/ta_morphometry_19.html
https://saga-gis.sourceforge.io/saga_tool_doc/8.4.1/ta_lighting_8.html
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Fig. 3 – Illustration of the raster predictors related to the morphometry macro-class used for the 
analysis. The example context is Luni sul Mignone and the displayed area corresponds to the 1 km 
buffer around the site (its position is indicated by the red marker in the DEM grid).
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Fig. 4 – Illustration of the raster predictors related to the Lighting and visibility macro-class used 
for the analysis.

where each row represents a point (archaeological site or random) and each 
column represents a raster analysis value (Tab. 2).

3.2  Defining most important features: a Machine Learning based pipeline

As already mentioned in the introduction and aims of this paper, the 
objective of this article is to use a quantitative approach to identify morpho-
logical characteristics of settlements in Southern Etruria. To achieve this, we 
will use methods specific to data analysis and ML. Feature Selection (FS) is a 
common technique in ML that involves selecting a subset of the most relevant 
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features to use in the construction of a predictive model (Liu 2010; James 
et al. 2013, 204). Unlike dimensionality reduction methods, such as PCA or 
more recent methods like t-SNE or UMAP (Cardarelli, Lapadula 2022), 
FS does not create new variables, but simply selects the most important ones 
from the existing data. While FS is typically performed before training a 
model, Feature Importance (FI) is performed after training a model and it is 
used to evaluate the relative importance of different features in the context of 
a specific model (Hastie et al. 2009, 593-595; Saarela, Jauhiainen 2021).

To support the explanation within the text, a diagram of the proposed 
pipeline is provided (Fig. 6). The various steps within the procedure are indi-
cated by a dashed box in the diagram and will be described in the following 
text. The application of preliminary FS (1st step, Fig. 6) involves the correla-
tion threshold (Saeys et al. 2007; Van Hulse et al. 2012; Tang et al. 2014). 
This is a conceptually simple but powerful method for reducing redundancy 
and noise in the dataset: if two measures are highly correlated, it means that 
one of the variables can be used to predict the other. This means that, within 
the large number of variables in the dataset, it is possible that some of them 
define the same phenomenon. Therefore, within each raster macro-class, we 
will calculate the correlations between the variables and eliminate those that 
are highly correlated.

To account for the possible non-linear nature of the correlations, we will 
use the Spearman correlation coefficient (Spearman’s ρ). This is a measure of 

Tab. 2 – Example table with some archaeological sites and random points with the values of each 
predictor from the spatial join operation.

index id name type Visible Sky … Valley Depth TWI TPI Landforms Geomorphon

0 15 Sorano-
Castelvecchio real 89,30 … 54,14 2,15 9 3

1 10 Pitigliano real 99,38 … 4,43 5,25 9 3
2 13 Monte Rosso real 90,26 … 12,95 5,52 7 6
3 16 Sovana real 98,91 … 3,40 6,32 9 3
4 4 Il Gaggio real 93,63 … 68,94 6,94 4 10

5 11 Le Sparne di 
Poggio Buco real 96,32 … 0,53 4,64 9 5

6 6 Meletello real 94,13 … 18,03 4,86 6 7
7 7 Monte Tellere real 98,94 … 0,00 3,68 10 3
… … … … … … … … … …
324 0 random random 98,60 … 2,04 6,18 5 4
325 0 random random 98,04 … 3,06 6,17 5 6
326 0 random random 95,83 … 14,17 8,90 6 6
327 0 random random 99,36 … 2,00 9,05 5 6
328 0 random random 98,14 … 4,39 7,54 5 6
329 0 random random 95,49 … 12,41 7,00 6 6
330 0 random random 96,63 … 45,67 6,65 5 6
331 0 random random 99,22 … 42,21 13,46 5 1
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Fig. 5 – Illustration of the raster predictors related to the Channels and hydrology and Terrain 
classification macro-classes used for the analysis.

the statistical dependence between two variables, which considers the ranks 
of the data rather than the raw values (Spearman 1904; Corder, Foreman 
2014, 140-145). This allows us to capture also non-linear relationships be-
tween the variables and to identify the most relevant features more accurately. 
The absolute value of 0.8 (i.e., ± 0.8) was chosen as the limit value, which is 
generally recognized as an extremely high correlation limit (Schober et al. 
2018). As this method is based on correlation, it is not possible to apply it 
to categorical predictors. The second step (2nd step, Fig. 6) involves training 
the ML model that will subsequently be used to calculate the FI. Prior to 
training the model, the dataset needs to be divided into a Train Set and a 
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Test Set (James et al. 2013, 176). This is a common procedure for many ML 
algorithms and allows the model to be trained on a significant portion of the 
data (Train Set - 80% of the total) before testing its performance on unknown 
data (Test Set - 20% of the total).

In this specific case, real and random sites are equally distributed in both 
the Train and Test sets, ensuring that our results are fair and unbiased. For 
this analysis, we have chosen to use the Random Forest model (Ho 1998). 
Random Forest is a ML algorithm that utilizes multiple decision trees to make 
predictions (Hastie et al. 2009, 587-603). The decision tree algorithm creates 
a tree-like model of decisions and their consequences by splitting the data into 
smaller subsets based on input variable values until a stopping criterion is 
met. Each node in the tree represents a decision or a test on an input variable 
and each branch represents the outcome of that decision or test. The leaves of 
the tree represent the final output or prediction (Harrington 2012, 37-60).

Although decision trees are intuitive ways to classify or label objects, 
they tend to overfit, i.e., memorize the training data and fail to predict new 
data (Harrington 2012, 39), defeating their substantial purpose. Random 
Forest combats this issue by combining multiple decision trees, each trained 
on a random subset of the data, to make the final prediction (Vanderplas 
2016, 426-433). Both Random Forest and decision trees use criterions called 
Gini impurity or entropy (Harrington 2012, 40-43; James et al. 2013, 
311-314) to determine how to split the data at each node in the decision tree. 
The goal of the algorithm is to minimize the criterion of the subsets created 
by each split. In this sense, a split that results in subsets with lower criterion 
is considered better than a split that results in subsets with higher criterion. 
Regarding the parameters chosen, 1000 decision trees were used in the pro-
posed Random Forest model and the Gini impurity was chosen as criterion.

Fig. 6 – Schematic representation of the pipeline used for data analysis. The dashed boxes indicate 
the various steps described in the text.
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After training the model, we move to the last step (3rd step, Fig. 6), deter-
mining the FI by using data from the Test Set to identify the most important 
features that distinguish real sites from simulated sites. In this analysis, we use 
the mean decrease in impurity (MDI) method. The idea behind this method 
is that features that are more frequently selected for splitting are more im-
portant in predicting the target variable. For each decision tree in the forest, 
we can calculate the total amount of impurity (e.g., entropy or Gini, supra) 
that is decreased by splitting on a particular feature. We can then average 
these values across all trees in the forest to obtain an estimate of the feature 
importance (Hastie et al. 2009, 593-595). In this case, for the calculation of 
the FI, it was chosen to treat quantitative and categorical measures separately.

To summarize the proposed model, redundant variables will be elimi-
nated during the initial FS step. Then, the ML model will be trained on the 
remaining data. The trained model will be used to calculate the most important 
features using the FI process, which will help to identify the most significant 
characteristics of the settlement pattern of Southern Etruria in the FBA.

3.3  Hardware and software

The supplementary material includes details on the hardware and 
software used, as well as the raw data in XLSX format (the table con-
taining values resulting from spatial join between real/random site and 
raster analysis), along with the analysis procedure with commented code, 
tables, and graphs (http://www.archcalc.cnr.it/indice/suppl-material/34.2/3/
Cardarelli_2023_supplementary.zip).

4.  Results

The results of correlation threshold process for FS are exemplified using 
the visibility macro-class as an example. In this case, we can visualize the re-
lationship between all variables using a scatterplot matrix (Fig. 7). From the 
scatterplot matrix, we can point out that some measures are highly correlated, 
such as Positive Openness and Visible Sky, which have a linear relationship. 
Other measures, such as Sky View Factor and Visible Sky, exhibit a non-linear 
relationship, such as an exponential or logarithmic relationship. Then, the 
correlations between the variables are quantified using the Spearman’s coef-
ficient and a matrix can be used to visualise them.

In the case of the visibility measures (Fig. 8a), the highly correlated 
measures (with an absolute correlation value greater than 0.8) are Positive 
Openness/Visible Sky, Positive Openness/Sky View Factor, and Visible Sky/
Sky View Factor. Positive Openness can be eliminated because it appears twice 
as a highly correlated feature, and in the case of Visible Sky/Sky View Factor, 
it is preferable to eliminate Sky View Factor because its average correlation 
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Fig. 7 – Scatterplot matrix related to the Lighting and visibility macro-class. Related measures are 
clearly visible. On the diagonal are histograms relating to each univariate variable.

Fig. 8 – a) Correlation matrix for the Lighting and visibility macro-class; b) correlation matrix relating 
to Morphometry macro-class; c) correlation matrix relating to Channels and hydrology macro-class.
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with the other features is higher (0.722 vs 0.724). By applying the same pro-
cess to the morphometric measurements, we can identify and eliminate the 
features Normalized Height and Terrain Ruggedness Index (TRI) (Fig. 8b). In 
the case of the channels and hydrology measures, lastly, there are no highly 
correlated measures (Fig. 8c). As previously mentioned, this process is not 
applied to qualitative measures, such as those related to Terrain classification. 
After training the Random Forest model, we can measure model performance 
through accuracy, i.e., the percentage of predictions (real or simulated site) 
that are corrected by the model.

The model trained on quantitative data had an accuracy score of 0.65, 
meaning that it was able to correctly classify 65% of the data, while the model 
trained on categorical data obtains an accuracy of 0.71 (71%) suggesting that 
categorical data seems to be able to discriminate more accurately between real 
and simulated data. After this verification, we can finally move on to feature 
importance (3rd step, Fig. 6). For a better interpretation of the results, it was 
decided to create a random variable that serves as a threshold for importance. 
Features that exceed this threshold are considered important, while those that 
fall below it are considered random and basically insignificant within the 
model. In terms of quantitative measures, five features exceed and overcome 
the random variable threshold: Negative Openness, Mid-Slope Position, 
Channel Network Distance, TWI, Visible Sky, Valley Depth, Slope, Average 
View Distance and Relative Slope (Fig. 9a).

However, only the first four predictors were found to be effective in cor-
rectly discriminating real sites from random ones. This conclusion was drawn 
from boxplots that visually represented the values of the predictors (Drennan 
2010, 37-41). These plots showed the difference in values between the real and 
simulated sites. The variables that differed markedly from the importance value 
obtained from the random variable (Negative Openness, Mid-Slope Position, 
Channel Network Distance, TWI, Visible Sky) and one below the random limit 
(DEM) were entered within the grid of boxplots. The predictors Negative Open-
ness (Fig. 10, 1), Mid-Slope Position (Fig. 10, 2), TWI (Fig. 10, 3) and Channel 
Network Distance (Fig. 10, 4) exhibited relevant differences at the interquartile 
range level. On the other hand, the difference using the variable Visible Sky 
mainly manifested itself at the level of outliers, which were more present in the 
random sites, particularly with respect to low value levels (Fig. 10, 5).

The last boxplot (Fig. 10, 6) represented a variable considered unimpor-
tant (that of the DEM). The boxplots were extremely similar and overlapped, 
making it impossible to discriminate real sites from random ones. Based on 
these results, the characteristics of the real sites were identified by having 
lower Negative Openness values (indicating they are more topographically 
closed), higher Mid-Slope Position values (indicating they are further from the 
slopes), lower TWI values (indicating that they are located in areas sheltered 
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Fig. 9 – Feature importance for continuous (a) and categor-
ical (b) values.

from waterlogging), and higher Channel Network Distance values (indicating 
that they are positioned above the underlying hydrological network) than the 
random sites. When analysing qualitative categorical data (Fig. 9b), we need 
to consider each value individually within the model, rather than comparing 
them as we would with quantitative data. This allows us to determine which 
individual categories within the data are the most important, rather than 
trying to compare the overall importance of different data sets.

In this case, the most informative variables are TPI Landforms (Middle 
Ridge) value 9, TPI Landforms (Plains) value 5, TPI Landforms (High Ridge) 
value 10, and Geomorphon (Ridge) value 3. These categories characterise 
the archaeological sites, except for TPI Landforms (Plains) value 5, which 
appears to describe simulated sites instead (Fig. 11).
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Fig. 10 – Series of boxplots showing the difference between the various ‘important’ continuous 
measurements (1-5) and ‘unimportant’ measure (6).

Fig. 11 – Series of bar graphs showing the number of sites per category 
for each ‘important’ categorical variable.

5.  Discussion and conclusion

The creation of numerous raster predictors allows us to build a compre-
hensive database for the creation of objective morphologic measurements. 
SAGA is an excellent solution for this purpose as it is open source and offers 
a wide range of powerful algorithms. By integrating this raster-database with 
the dataset of archaeological and random contexts and using the Random 
Forest model and the FI process, we are able to identify the attributes that 
characterise the actual FBA settlements in Southern Etruria: by comparing 
these attributes with random points within the same landscape, we can discern 
the characteristics that are specific to the settlement pattern and not influenced 
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by the overall landscape morphology. As far as the characterization of the 
macro-classes is concerned, the average impact of the various features is high-
est for the classes referring to visibility (0.097) followed by hydrology (0.090) 
and finally the general morphology of the territory (0.06), suggesting a strong 
impact of the visibility concept for the characterization of the analysed sites.

The features selected in this work can be linked to the settlement pattern 
model described empirically for the FBA in Southern Etruria: settlements are 
located in a prominent position with respect to the underlying hydrographic 
network (Channel network distance, TWI), are not on slope (Mid-slope po-
sition) and occupy mainly summit positions (informative variables for TPI 
Landforms and Geomorphons). In contrast, more intuitive measures such as 
altitude above sea level (DEM) do not seem to be significant factors in char-
acterizing the settlement pattern. Specifically, the Negative Openness measure 
is the variable that best discriminates real from simulate site (Fig. 9a) and 
seems to describe extremely effectively the concept of ‘defensive potential’ 
(i.e., a closed location in landscape) described by numerous authors and con-
sidered as one of the fundamental settlement characteristics in the territory. 
In fact, the analyses carried out confirm that a settlement model exists, and it 
is generally well characterized, as the accuracy of the Random Forest model 
is around 70% for both quantitative and categorical data.

The quantification of such phenomenon, as well as confirming the set-
tlement model proposed by numerous authors, allows for a broader field of 
investigation. For example, we can generate predictive maps of the territory 
using the features considered most important or take into account different 
targets. By using sites from a different chronological phase (e.g., those from 
the Iron Age) instead of random points, it is possible to identify new charac-
teristics and features that discriminate contexts and can be used as the basis 
for new historical-archaeological interpretations. In this sense, combining FE 
and FI is a useful tool that allows us to identify and select the most important 
features from a dataset regarding a specific objective. In our case, we were 
able to reduce the number of continuous predictor variables from 14 to 4 and 
categorical variables from 20 to 3. This not only simplifies the interpretation 
of the results, but also allows us to conduct further analyses without the need 
for dimensionality reduction algorithms.

Obviously, the use of this pipeline is not limited to the GIS and geo-
graphical ambit but can be used as an excellent alternative to dimensionality 
reduction methods in any multivariate archaeological dataset.

Lorenzo Cardarelli
Dipartimento di Ricerca e Innovazione Umanistica 
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ABSTRACT

This research aims to use quantitative and repeatable GIS techniques, as well as Machine 
Learning algorithms, to study the settlement patterns in Southern Etruria during the final phase 
of the Bronze Age (1150-950/925 BC). The region of Southern Etruria is located in present-day 
Latium, Tuscany, and Umbria. The study, which includes 166 settlements, focuses on identi-
fying the morphological characteristics of these settlements by means of raster analysis. Using 
a Machine Learning approach, the research will compare real settlements with random points 
within the region to understand the specific characteristics of the settlement pattern in the 
landscape. The study will also examine the use of feature selection and features importance 
methods to select the most significant features of a multivariate dataset.
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