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DIMENSIONALITY REDUCTION FOR DATA VISUALIZATION 
AND EXPLORATORY ANALYSIS OF CERAMIC ASSEMBLAGES

1. Introduction

One of the most common problems in archaeological studies is organising 
and interpreting multivariate datasets. Within a dataset, as in most common 
spreadsheets, each archaeological record is connected to a wide range of vari-
ables, both quantitative and qualitative, such as provenance, size, typological 
classification, petrographic composition − if we are talking about ceramics −  
but also altitude above sea level, presence of certain structures, chronology 
and other characteristics related to architecture or to the different classes of 
materials − if we are dealing with sites.

In order to address this problem, it is necessary to organize these variables 
to facilitate, if not obtain, a possible interpretation of the archaeological data 
under consideration. Reducing the size of the dataset is particularly useful 
for the following reasons (Harrington 2012, 270-271):
– Reduce data storage space.
– Fewer dimensions require a shorter computation time.
– Some algorithms do not perform well with large dimensions.
– Remove redundant features.
– Data visualization.

Dataset dimension reduction can be performed mainly in two ways 
(James et al. 2013, 204): i) by keeping the most relevant variables from the 
original dataset (Subset or Attribute Selection) (Sammut, Webb 2010, 332), 
and ii) by creating new variables reworking input variables (Dimensionality 
Reduction) (Sammut, Webb 2010, 326)

To handle quantitative data, Principal Component Analysis (PCA) is of-
ten used, especially for the analysis of archaeometric or petrographic pottery 
composition (Baxter 1994; Marengo et al. 2005; Erdem et al. 2008). In 
addition to ceramics, PCA is also useful when dealing with other archaeo-
logical problems, such as lithic analysis (Prentiss 1998; Scerri et al. 2016), 
spatial analysis and landscape archaeology (Šmejda 2007; Klinger et al. 
2011; Janovský, Horák 2018; Piña-Torres et al. 2018). This method is 
also the most detailed in several handbooks, thus building a bridge between 
archaeology and statistics (Shennan 1997; Drennan 2009, 299-303; Van-
Pool, Leonard 2011, 285-303).

PCA is not the only one of its kind. Other methods with different char-
acteristics and purposes can also be employed. A selection of unsupervised 



34

L. Cardarelli, A. Lapadula

dimensionality reduction algorithms (§ 3) (Vanderplas 2016, 333-334) will 
be applied to a quantitative multivariate archaeological dataset (§ 2). The idea 
is to assess the strength of these algorithms for exploratory analysis (Tukey 
1997) and data visualization. As mentioned earlier, one of the purposes of these 
techniques is to aid data visualization by reducing the data size. The relation-
ships between variables, such as the height and width of a group of vessels, 
can be visualized and more easily understood through a scatter plot (Drennan 
2009, 200-201). In this way, three variables at most can be displayed simul-
taneously on the same graph. Consequently, tools for dimensional reduction 
and for the complex visualization of multivariate datasets must be introduced, 
one of which will be described below. This dataset includes about 1500 vessels 
from the protohistoric necropolis of Osteria dell’Osa, 20 km East of Rome. 
The site was chosen as it was systematically investigated and the materials are 
comprehensively and exhaustively published (Bietti Sestieri 1992).

The application of dimensionality reduction methods to a multivariate 
dataset allows us to formulate new interpretations through a visualisation of the 
overall data structure. Reduction algorithms can be a tool as valuable in data 
interpretation as more traditional approaches to the study of ceramic, e.g. the 
creation of typologies or classifications. Displaying a large amount of data on a 
single graph allows us to identify structures and distributions based on ceramic 
characteristics. In the case of Osteria dell’Osa, the application of this meth-
odology confirms that the Functional Classes (§ 2), archaeologically defined, 
correspond to effective clusters characterised by morphological similarities.

Therefore, the aims of this work are to:
1) Apply and evaluate a range of dimensionality reduction methods on a 
dataset of vessel profiles.
2) Identify the most efficient algorithm based on the ability to identify corre-
spondences between archaeological interpretations and profile morphology.
3) Proceed with some exploratory analyses and evaluate the results according 
to the specificity of the applied algorithm.
4) Relating the method to ‘more traditional’ approaches.

2. The dataset

The necropolis of Osteria dell’Osa, in chronological terms, covers the 
Latial Periods II, III and IV (9th-6th century BC) (Bietti Sestieri 1992, 276). 
The extensive excavation of this cemetery makes it one of the best-documented 
contexts of the period. For this reason, it is one of the best-known sites that 
offers the possibility of carrying out analysis on numerous materials, especially 
for the Early Iron Age.

Every Early Iron Age 1 vessel (Fig. 1) that is complete or can be entirely 
reconstructed from the excavation catalogue (Bietti Sestieri 1992, 536-537, 
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Fig. 1 – A selection of the drawings of the original vessels from 
the catalogue. Bibliographic references (figure, table and tomb 
number) are indicated for each vessel.

Fig. 2 – Editing process representation. For bibliographic ref-
erences see Fig. 1.
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Fig. 3 − A selection of the vessels in the dataset, repre-
sented by binary matrices.

Osteria dell’Osa phases IIA-IIB; 900-770 BC) was included in the dataset (for a 
total of 1576 vessels). All the vessels’ drawings are edited using a photo-editing 
program (Fig. 2), and the drawing sections are extrapolated, rescaled, and 
standardized in resolution (0,125 px/cm). A Python code 1 is used to create 
binary images on which the analysis is carried out. Subsequently, the vessel 
profiles are transformed into a two-dimensional array where the presence of 
the profile (yellow) is identified with the value number 1, while the absence 
of the latter (purple) corresponds to the value number 0 (Fig. 3).

Finally, all binary images are scaled within a 256×256 pixel frame, to 
obtain a coherent and standardized database.

The following information, of an archaeological-interpretative nature, 
is associated with each of the images:
– Functional Class: each vessel has been distributed into functional categories, 
according to the following criteria:

Class 1: open vessel with a horizontal handle and non-articulate profile 
(bowls).

Class 2: open vessel with an articulated profile or one or two vertical 
handles (cups, mugs, goblets).

1 This Python script is part of Lorenzo Cardarelli’s PhD project and it will be made available 
at the end of the PhD period. 
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Class 3: closed vessel with horizontal handle (jars and necked jars).
Class 4: closed vessel with one or two vertical handles (jugs and amphoras).

– Morphology: Class 1 and 2 are combined in Open forms, Class 3 and 4 in 
Closed forms.

Summing up, the multivariate dataset consists of archaeological infor-
mation and the profile image of the vessel itself, described by a binary array 
of 256×256 values. This profile is translated into a very high number of di-
mensions: if a common spreadsheet is used, 65,536 columns are connected 
to each record (row). The best approach to explore this type of dataset is 
using dimensional reduction tools. Taken individually, variables defining the 
image are meaningless, therefore it is not possible to select more relevant ones 
(feature selection), but they must be created to represent the characteristics 
of the dataset using dimensionality reduction algorithms.

3. The algorithms

From the highest level, dimensionality reduction algorithms can be di-
vided into supervised, which consider one or more attributes when reducing 
the dimensions, and unsupervised, which consider only the data structure. An 
example of a supervised size reduction algorithm is the Linear Discriminant 
Analysis (LDA) (Fisher 1936; Sammut, Webb 2010, 745-747). All the algo-
rithms used in this paper, as mentioned above, are unsupervised. Dimensiona-
lity reduction algorithms can further be roughly divided into linear/non-linear 
and parametric/non-parametric methods. In linear methods, the projection in 
the lower dimension is a linear operation, a condition not met in non-linear 
methods (Fig. 4). Parametric methods require the construction of an explicit 
function for dimensionality reduction, unlike non-parametric methods. Both 
non-linear and non-parametric techniques include Manifold learning methods 
(Vanderplas 2016, 445). The lower dimensions in linear dimension reduction 
are easily interpretable because of their linear combinations of the input variable. 
Thus, they do not perform well when the data present non-linear relationships 
(Vanderplas 2016, 445-446). Non-linear algorithms and especially Manifold 
learning methods can highlight complex non-linear relationships between data, 
but only some properties of the original data are preserved, making the meaning 
of these features difficult to understand. Consequently, they are mainly used 
for data visualization (Das, Pal 2022, 1).

VanPool and Leonard (2012, 287) stated that archaeologists are 
generally not interested in algebra or mathematical structures defining and 
characterising these methods, therefore only a brief empirical introduction to 
the algorithm is proposed here. For those who are interested in more mathe-
matical or technical aspects, details are however provided in the bibliography/
web bibliography section of this paper.
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This paper compares results from ten dimensionality reduction algorith-
ms. The linear and parametric algorithms used here are: Principal Component 
Analysis and some of its implementations (Sparse PCA, Incremental PCA) 
and Truncated singular value decomposition (TruncSVD). The non-linear 
and non-parametric algorithms used are: Multidimensional scaling, Locally 
Linear embedding, ISOMAP, t-SNE, UMAP. Lastly, Kernel PCA is a non-linear 
but parametric method. Except the UMAP, all the other algorithms are part 
of the Scikit-learn library (https://scikit-learn.org/stable/), an open-source 
Python library for data analysis. Since UMAP is not included in this library, 
the official repository was used.

3.1 Principal Components Analysis (PCA) 2

PCA is one of the oldest and best-known multivariate technique (Pearson 
1901; Hotelling 1933). Its goal is to reduce the dataset dimension preserving 
as much variability as possible. Subsequently PCA finds new variables, called 
Components, that are linear combinations of variables from the original data-
set. These linear variables maximize the variance and are uncorrelated with 
each other (Shlens 2014; Nanga et al. 2021, 192). The biggest variance is 
always represented by the first component, the second one by the second com-
ponent and so on. The second axis is also orthogonal to the first one and to the 

2 https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html.

Fig. 4 − A simple representation of how linear and non-linear techniques for dimension reduction works.

https://scikit-learn.org/stable/
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
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direction of the largest variance. The total number of components is equal to 
the original size of the dataset (Harrington 2012, 270). A significant amount 
of information is extracted using this analysis: PCA can give insight into the 
data structure using the correlation between component scores and variables. 
These correlations are known as Component Loadings, and their purpose is to 
improve the interpretation of each component (Guerra-Urzola et al. 2021).

This method has some limitations: since the new components are linear 
combinations, the PCA fails if the analysed dataset is characterized by non-lin-
ear relationships (Nanga et al. 2021, 192) and it is sensitive to outliers. This 
method is widely used and known in archaeology. For further information 
on this technique, see Jolliffe’s monographic work (2002).

3.2 Sparse PCA 3

It is an implementation of PCA. While PCA components are usually lin-
ear combinations of all input variables, Sparse PCA finds linear combination 
that contains a small subset of original variables (Zou et al. 2006; Chen, 
Rohe 2021, 2; Guerra-Urzola et al. 2021). It often has applications in 
anthropology (Zhao et al. 2017).

3.3 Incremental PCA 4

This PCA implementation finds similar projections while processing only 
a few samples per time. This process has the advantage of using less memory 
with similar result (Ross et al. 2008).

3.4 Truncated singular value decomposition 5

This method (TruncSVD) is closely related with PCA but works better 
on sparse data (sparse data refers to the data with many zero values − https://
en.wikipedia.org/wiki/Sparse_matrix). The differences with PCA are found 
from a computational point of view: it shares all the pros and cons (Shlens 
2014, 7). This method is applied in electromagnetic prospection, in connection 
with landscape archaeology (Catapano et al. 2014).

3.5 Kernel PCA 6

This method is a non-linear implementation of PCA. The non-linear-
ity is achieved using the so-called kernel trick to divide the input variables 
(Vanderplas 2016, 413; Nanga et al. 2021, 200-201). It has applications in 

3 https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.SparsePCA.html 
4 https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.IncrementalPCA.html 
5 https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.TruncatedSVD.html 
6 https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.KernelPCA.html 

https://en.wikipedia.org/wiki/Sparse_matrix
https://en.wikipedia.org/wiki/Sparse_matrix
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.SparsePCA.html
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.IncrementalPCA.html
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.TruncatedSVD.html
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.KernelPCA.html
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ceramics studies, with the comparative use of Kernel PCA and PCA methods 
in archaeometric analysis (He et al. 2019).

3.6 Multidimensional scaling (MDS) 7

This non-linear method performs a visual representation of distance or 
dissimilarities between pairs of data points (Kruskal, Wish 1978). Records 
that have shorter distances are more similar and are close in the graph; 
conversely, records that are less similar have longer distances in the graph 
preserving the global structure of the data (Saaed et al. 2018; Nanga et al. 
2021, 201-202; Wang et al. 2021, 5). For instance, this method is used in 
zooarchaeology to identify regional and functional variability in the exploi-
tation of some species in different sites (Orchard, Clark 2005). Another 
application of the method concerns the use of non-Euclidean distances in 
point pattern analysis (Pérez 2015).

3.7 Locally Linear Embedding (LLE) 8

LLE is a non-linear dimension reduction that can preserve only the local 
properties of data (Roweis, Saul 2000). This method learns the global struc-
ture to recreate it in a local linear reconstruction (Nanga et al. 2021, 202-204).

3.8 ISOMAP 9

This algorithm combines some characteristics of PCA and MDS. Isomap 
seeks a lower-dimensional embedding, which maintains geodesic distances 
(https://en.wikipedia.org/wiki/Geodesic) between all points (Tenenbaum 
et al. 200; Nanga et al. 2021, 202). Isomap can be seen as an extension of 
Multi-dimensional Scaling (MDS) or Kernel PCA.

3.9 t-distributed Stochastic Neighbor Embedding (t-SNE) 10

t-SNE Embedding (van der Maaten, Hinton 2008) converts affinities 
of data points to probabilities (Nanga et al. 2021, 206-205). If two points 
are close to each other in the high dimensional space, they have a high 
probability of being close to each other in the low dimensional embedding 
space. Unlike the other non-linear methods mentioned above, t-SNE reveals 
structure at many different scales, translating into better data visualization. 
This local structure is well preserved, but the algorithm fails to preserve the 

7 https://scikit-learn.org/stable/modules/generated/sklearn.manifold.MDS.html.
8 https://scikit-learn.org/stable/modules/generated/sklearn.manifold.locally_linear_embedding.

html.
9 https://scikit-learn.org/stable/modules/generated/sklearn.manifold.Isomap.html.
10 https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html.

https://en.wikipedia.org/wiki/Geodesic
https://scikit-learn.org/stable/modules/generated/sklearn.manifold.MDS.html
https://scikit-learn.org/stable/modules/generated/sklearn.manifold.locally_linear_embedding.html
https://scikit-learn.org/stable/modules/generated/sklearn.manifold.locally_linear_embedding.html
https://scikit-learn.org/stable/modules/generated/sklearn.manifold.Isomap.html
https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html
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global structure of the data (Wang et al. 2021, 7). The method is used in 
flint study (Elliot et al. 2021)

3.10 Uniform Manifold Approximation and Projection for Dimension 
Reduction (UMAP) 11

UMAP is a dimensionality reduction technique introduced in 2018 
(McInnes et al. 2018). This algorithm projects high-dimensional data in a 
lower space. UMAP is similar to t-SNE, but it is considered by the authors 
more performing, specifically in relation to computational time (McInnes et 
al. 2018, 28-30) and with a better ability to preserve the global structure of 
the data (McInnes et al. 2018, 36-38). This method is applied for the study of 
archaeological pottery (Navarro et al. 2021).

4. Clustering metrics

Some clustering metrics will be calculated to quantify the results of the 
dimensionality reduction: it is assumed that the Functional Class, previously 
defined, corresponds to a homogeneous set of vessels identifiable through the 
binary matrices. The following metrics are used.

4.1 Silhouette score

This score relates to a reduction with better defined clusters. The result 
is defined between -1 (incorrect clustering) and +1 (correct clustering). Scores 
around 0 indicate overlapping clusters (https://scikit-learn.org/stable/modules/
generated/sklearn.metrics.silhouette_score.html).

4.2 Calinski-Harabasz Index

This score is defined as the ratio of the sum of between-clusters dispersion 
and of within-cluster dispersion for all clusters (where dispersion is defined 
as the sum of squared distances): a higher Calinski-Harabasz score relates to 
a model with better-defined clusters (https://scikit-learn.org/stable/modules/
clustering.html#calinski-harabasz-index).

4.3 Davies-Bouldin Index

This index indicates the average ‘similarity’ between clusters, where the 
similarity is a measure that compares the distance between clusters with the 
size of the clusters themselves. 0 is the lowest possible score and a lower Da-
vies-Bouldin index relates to a model with better separation between the clusters 
(https://scikit-learn.org/stable/modules/clustering.html#davies-bouldin-index).

11 https://umap-learn.readthedocs.io/en/latest/.

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.silhouette_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.silhouette_score.html
https://scikit-learn.org/stable/modules/clustering.html#calinski-harabasz-index
https://scikit-learn.org/stable/modules/clustering.html#calinski-harabasz-index
https://scikit-learn.org/stable/modules/clustering.html#davies-bouldin-index
https://umap-learn.readthedocs.io/en/latest/
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5. Results

The dataset was pre-processed by using Scikit-learn MinMaxScaler 
(https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.
MinMaxScaler.html), to scale all values in a range between 0 and 1, and 
algorithms are tested on the dataset. Two dimensions are used, so the results 
could be seen on a simple scatterplot (embeddings): every point, therefore, 
represents a vessel. This feature is very interesting, as it goes beyond simple 
visualization: it is possible to globally observe the characteristics of ceramic 
assemblages on a single graph such as macro or micro differences between 
the vessels, quantity of objects of a certain class, presence of outliers, etc.

Before discussing metrics and reductions’ shapes, let us have a brief look 
at the algorithms’ executions time 12.

The barplots show, in order, the highest to the lowest execution time 
(Fig. 5): the Sparse PCA algorithm was extremely slow when compared to 
other methods (nearly 10 minutes to run). Eliminating this outlier from the 
graph, the second most expensive algorithm is UMAP (67 seconds), followed 
by Incremental PCA (12 secs); t-SNE (6,1 secs); MDS (5,9 secs); LLE (3,8 

12 The script is run on Acer notebook, Windows 10, Intel Core i7-10750H, 2.60GHz; 16 
GB DDR4 RAM; NVIDIA GeForce RTX 3060 6GB.

Fig. 5 − Barplots showing the execution time of each algorithm on the dataset.

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
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secs); PCA (1,9 secs); Isomap (1,6 secs); Kernel PCA (1,2 secs); TruncSVD 
(0,8 secs). The result is surprising: UMAP is believed to be extremely faster 
than t-SNE (https://umap-learn.readthedocs.io/en/latest/performance.html). 
However, this can be explained by the performance of linear size reduction 
algorithms such as PCA and specifically TruncSVG, which is built for sparse 
matrices.

Besides execution time, these algorithms produced different results and 
they can be useful to visualize or explore this type of data (Fig. 6). LLE algo-
rithm did not seem to perform correctly (Vanderplas 2016, 456), providing 
a result that is not easily interpretable by archaeologists. The other methods, 
unlike LLE, seem to place the vessels correctly: these are closer to each other 
within the Functional Class. Implementations of PCA, on a global level, 
seem to provide a reduction with a different rotation from classical PCA. The 
algorithms offering more visually interesting results are t-SNE and UMAP. 
The structure of the data, and therefore of a generic ceramic assemblage, is 
characterized by non-linearity relationships.

Regarding the metrics, a higher value of the Silhouette score and Ca-
linski Harabasz index also corresponds to a better result in clustering similar 
objects. As for the Davies Bouldin index, it is the opposite: when it tends to 
zero, it corresponds to a better result. To make the three indices comparable, 
the inverse of the Davies Bouldin index is calculated. In this case, higher 
values also correspond to better performances. The three indices are then 
standardized 13 on the same scale (Tab. 1).

13 The standardized measure (or Z-score) (Drennan 2009, 49; VanPool, Leonard 2011, 
139) is obtained by subtracting, for each value (X), the mean (μ) and dividing the result by the 
standard deviation (σ).

Method Silhouette 
score

Davies 
Bouldin index

Calinski 
Harabasz index

Davies Bouldin 
index (inversed)

PCA 0,252 1,510 798,325 0,662
Sparse PCA 0,256 1,473 802,966 0,679
Kernel PCA 0,258 1,478 817,184 0,677
Incremental PCA 0,252 1,510 798,325 0,662
TruncatedSVD 0,180 1,600 654,367 0,625
MDS 0,112 3,614 229,309 0,277
LLE 0,034 1,811 422,399 0,552
Isomap 0,262 1,290 871,737 0,775
t-SNE 0,298 1,187 759,926 0,842
UMAP 0,330 1,072 903,297 0,933

Tab. 1 − Clustering metrics.

https://umap-learn.readthedocs.io/en/latest/performance.html
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Fig. 6.1 – Dimensionality reduction algorithm embeddings output.
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Fig. 6.2 – Dimensionality reduction algorithm embeddings output.

Method Mean
UMAP 1,265
t-SNE 0,727
Isomap 0,634
Kernel PCA 0,333
Sparse PCA 0,307
PCA 0,250
Incremental PCA 0,250
TruncatedSVD -0,340
LLE -1,435
MDS -1,992

Tab. 2 – Average metrics scores.
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Once the measures have been standardized, the average is calculated for 
each algorithm (Tab. 2). Relying on this process, the methods that can best 
represent the data are UMAP, followed by t-SNE and ISOMAP.

Based on the score obtained, UMAP is the preferred algorithm for 
displaying and exploring this type of data. It is a very powerful tool, which 
preserves the local structure and the global one to a greater extent than the 
t-SNE (McInnes et al. 2018, 28-30). The uses of UMAP are therefore not 
limited to data visualization: it can be applied to other applications, such as 
clustering tasks (McInnes et al. 2018, 39; Allaoui et al. 2020; https://umap-
learn.readthedocs.io/en/latest/clustering.html). These features make UMAP a 
very powerful tool, but like all algorithms for dimensionality reduction, it has 
some weaknesses: such as the interpretability of methods like PCA. The PCA 
components, as previously mentioned, represent the directions of the greatest 
variance. In the case of UMAP, these dimensions are meaningless. There are 
some key points to remember when reading and interpreting a UMAP result: 
although it is true that the global structure is better preserved, the distances 
between the clusters could be not significant (https://towardsdatascience.com/
tsne-vs-umap-global-structure-4d8045acba17).

Therefore, it is dangerous to quantify the distance between clusters 
because UMAP and t-SNE use local notions of space to proceed with di-
mensionality reduction. Furthermore, using the default settings of UMAP, 
the size of the clusters is meaningless, because the density is not preserved 
(Narayan et al. 2021). For better preservation of the density in the reduc-
tion, the densmap function from the UMAP library can be used (Narayan 
et al. 2021, https://umap-learn.readthedocs.io/en/latest/densmap_demo.
html#better-preserving-local-density-with-densmap).

Fig. 7 – Scatterplot showing UMAP reduction on Open shapes, comparison between activated and 
deactivated densmap is proposed.

https://umap-learn.readthedocs.io/en/latest/clustering.html
https://umap-learn.readthedocs.io/en/latest/clustering.html
https://towardsdatascience.com/tsne-vs-umap-global-structure-4d8045acba17
https://towardsdatascience.com/tsne-vs-umap-global-structure-4d8045acba17
https://umap-learn.readthedocs.io/en/latest/densmap_demo.html#better-preserving-local-density-with-densmap
https://umap-learn.readthedocs.io/en/latest/densmap_demo.html#better-preserving-local-density-with-densmap
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We propose here another example using Open shapes from the dataset, 
presented in two scatterplots: one with UMAP without density preservation 
and one with density preservation active (Fig. 7).

By these embeddings and their comparison, some interesting informa-
tion on vessels is obtained: first, Open shaped vessels can be divided into 
two groups, which would seem to roughly correspond to Functional classes. 
Specifically, in the cluster on the left, there are some cups (and therefore with 
a vertical handle), but morphologically they are very similar to bowls (Class 
1). In the second scatterplot, the Class 1 (bowls) shows a greater dispersion, 
or at most a greater number of outliers, if compared to the cluster on the right. 
This class is clearly characterized by greater morphological heterogeneity. This 
type of investigation offers a lot of possibilities for the morphometric study of 
ceramics, such as variability and standardization. If variability is defined as 

Fig. 8 – Comparison between different number of neighbors during UMAP dimensionality reduction.
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the relative degree of heterogeneity in a class of manufacts (Kotsonas 2014, 
8), and the standardization is a reduction in variability within the same class 
(Rice 1991, 268), by calculating metrics on these clusters, their variability 
is easily defined.

Particularly useful for archaeologists is the possibility, in UMAP (but 
also in other Manifold learning algorithms), to control the balance between 
local and global structures. In UMAP, this can be controlled through a pa-
rameter called n_neighbors: if this parameter has low values, UMAP will 
highlight the local data structure. Higher values instead will emphasize the 
global data structure. A low value of this parameter leads to a combination 
of small clusters, containing extremely similar vessels but without memory of 
the global structure, as it results in the macro-division between Class 1 and 
Class 2 highlighted by using a higher value of the parameter (Fig. 8). This 
parameter can be very useful in the study of ceramics. In its classification, 
especially in protohistoric contexts, a hierarchical approach is often used 
Peroni 1994, 26.

For other details on UMAP and on the parameters that can be used, 
please refer to the algorithm’s website: https://umap-learn.readthedocs.io/en/
latest/index.html#umap-uniform-manifold-approximation-and-projection-for 
-dimension-reduction.

Summing up, there are several algorithms for size reduction with dif-
ferent characteristics and purposes: to visualize the data, t-SNE and UMAP 
are the best choices. To explore the data structure, focusing on the local and 
global structure, UMAP is the best algorithm. To create clusters, UMAP is 
also the best choice. However, this type of consideration does not mean that 
methods such as PCA should always be discarded. The main purpose of PCA 
is dimension reduction and using it as a data visualization tool is allowed, 
at the cost of performance, as shown above. PCA is a great and useful tool 
in the hands of archaeologists. If non-linear reduction methods (specifically 
UMAP) performed better in exploring and displaying this type of data, it 
is also necessary to highlight some criticalities. With Manifold learning 
methods, there is no possibility to manage missing data, unlike PCA. The 
presence of noise in the data can lead the Manifold learning algorithms to 
be mistaken, leading to an incorrect dimension reduction. The PCA filters 
out the most important components by choosing the greatest variance. The 
result of a reduction through Manifold learning strictly depends on the 
number of neighbours chosen, and there are no criteria for defining this 
choice. The number of optimal dimensions for the Manifold methods is 
difficult to determine, while in the case of PCA this is defined by the vari-
ance. If attributing a meaning to dimensions in Manifold methods is cryptic 
and often unclear, the main components of PCA have a very clear meaning 
(Vanderplas 2016, 455-456).

https://umap-learn.readthedocs.io/en/latest/index.html#umap-uniform-manifold-approximation-and-projection-for-dimension-reduction
https://umap-learn.readthedocs.io/en/latest/index.html#umap-uniform-manifold-approximation-and-projection-for-dimension-reduction
https://umap-learn.readthedocs.io/en/latest/index.html#umap-uniform-manifold-approximation-and-projection-for-dimension-reduction
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6. Conclusions

Using dimension reductions algorithms on a multivariate dataset has 
undoubted benefits: in this example, their use simplifies the understanding 
of a high-dimensionality dataset, ranging from 65,536 dimensions to 2. The 
quantification of the pot profile is also a rather interesting feature, and it can be 
insightful for the study of pottery. Using these methods, it is possible to explore 
large quantities of material in a short time (1500 vessels processed in just over 
a minute in the case of UMAP, e.g.). Manifold learning methods (especially 
t-SNE and UMAP) are successful in identifying the structure of the data, creating 
clusters of vessels that are similar in shape and function. By performing a quick 
analysis on the data, some cups have a shape more similar to the bowls and 
the latter group is characterized by a greater morphological heterogeneity. The 
analysis also fits a hierarchical approach widely used in the study of ceramics.

In conclusion, the approach proposed in this work is particularly useful 
because it allows the use of statistical-mathematical tools for the morpholog-
ical study of ceramic profiles. This method can be used independently or in 
integration with a traditional approach. In this perspective, the correspondence 
between archaeological and statistical data, defined by the correspondence 
between functional forms and vessel profiles, is particularly relevant.
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ABSTRACT

Size reduction algorithms are essential in the study of multivariate datasets. Many vari-
ables make it difficult to visualize data. In Archaeology, this problem often concerns the study 
of some variables, which can be quantitative or qualitative. In this article, several methods for 
dimension reduction are applied to a pottery dataset from the protohistoric necropolis Osteria 
dell’Osa, located 20 km East of Rome. These methods offer the possibility of visualising and 
analysing large amount of data in a very short time. Our results show that non-linear and 
non-parametric algorithms such as t-SNE and UMAP are the best choice for visualising and 
exploring this type of data.
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