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AN R SCRIPT TO FACILITATE CORRESPONDENCE ANALYSIS. 
A GUIDE TO THE USE AND THE INTERPRETATION OF RESULTS 

FROM AN ARCHAEOLOGICAL PERSPECTIVE

1. Introduction

In a recent issue of this journal, M.J. Baxter and H.E.M. Cool published 
an interesting article on the use of Correspondence Analysis (hereafter, CA) 
in archaeology (Baxter, Cool 2010). That article, as well as previous ones 
by the same authors (e.g., Cool, Baxter 1999), has clearly underscored the 
usefulness of the technique for the interpretation of the complex datasets 
archaeologists often happen to deal with. The graphical display of rows and 
columns of a contingency table enables the analyst to search the likely dimen-
sion of the data and explore different trends of variability, allowing hidden 
patterns to emerge.

The use of CA has steadily increased in social science (see, e.g., the papers 
in Blasius, Greenacre 1998) as well as in archaeology. Even though in the 
latter �eld CA has been slow in gaining popularity, with the exception of early 
groundbreaking studies (Bølviken et al. 1982; Djindjian 1985; Madsen 
1989; Gillis 1990), today it is used for many purposes, including intrasite 
activity areas research (Kuijt, Goodale 2009; Alberti 2012, 2013), burial 
assemblages analysis (Wallin 2010), on-site distribution of faunal remains 
(Potter 2000; Morris 2008), distribution of drinking pottery types in the 
context of cultures contact (Pitts 2005), stratigraphy and formation processes 
(Mameli et al. 2002; Pavùk 2010), seriation and chronology (Bellanger et 
al. 2008; Peeples, Schachner 2012).

Given the relevance and utility of CA, Baxter and Cool are right in ad-
vocating a more widespread use of the technique (Baxter, Cool 2010, 213, 
225), and their effort in providing a detailed guide to perform CA in the free 
statistical R environment (Ihaka, Gentleman 1996) is very welcome. In fact, 
all the main commercial statistical programs can perform CA, but their price 
is generally far beyond the budget of the average user, let alone students will-
ing to approach the technique to analyse data on their own. On the contrary, 
many packages that perform CA are freely available in R, each with different 
features as far as graphical output and analytical tools are concerned: see, e.g., 
the “anacor” (de Leeuw, Mair 2009), “ca” (Nenadic, Greenacre 2007), and 
“FactoMineR” packages (Lê et al. 2008; Husson et al. 2011), or those (namely, 
“MASS”, “ade4”, and “vegan”) used by Baxter and Cool (2010, references 
therein). The availability of many different tools offers to the user the possibility 
to choose the one(s) he considers more appropriate for his analytical tasks.
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As for the choice I made, the decision to focus on the “ca” and “Fac-
toMineR” packages rests on both matter of personal taste and on the fact 
that extensive literature does exist allowing the users to go deeper into the 
details of both packages (Greenacre 2007, 213-258; Nenadic, Greenacre 
2007; Lê et al. 2008; Husson et al. 2011). Remarkably, video tutorials on 
the use of “FactoMineR” have been made available by F. Husson himself and 
can be easily found on his YouTube channel (http://www.youtube.com/user/
HussonFrancois).

2. Aim of the article

The aim of the article is twofold, namely:

– to expand Baxter and Cool’s sensible idea of bene�tting from the �exibility 
of the R environment to perform CA;
– to make a step forward in the direction of freeing the user from manually 
entering long pieces of R code; in this respect, an R script will be proposed. 
It will be soon made available both on-line (http://uniud.academia.edu/Gi-
anmarcoAlberti/) and from the author upon request. A video tutorial on 
YouTube is also planned.

It is not the intention of this article to instruct the readers on the coding 
needed to perform CA. As a matter of fact, I do not want to replicate what 
already exists in literature: many scholars have already focused on line-by-line 
tutorials of CA in R (Nenadic, Greenacre 2007; Greenacre 2007, 213-258; 
Baxter, Cool 2010; Husson et al. 2011, 59-126; Glynn in press). Rather, 
this work is intended for archaeologists with no or scant knowledge of R yet 
willing to use it to perform CA. For this reason, the article concentrates on the 
analysis’ output rather than on the way to obtain it from R. More experienced 
R users will already be familiar enough to grasp the script on their own and to 
use (or even modify) it according to their personal taste and speci�c needs.

What are the advantages of the script? It allows the user to:

– pick the best (or, at least, what I consider as such) from the aforementioned 
two R packages developed by leading scholars in CA computation, in order 
to provide a set of CA statistics and graphical outputs relevant to the analysis 
of data;
– provide a textual summary of the CA output statistics; 
– provide graphs (some of them not native to the packages) that are important 
for CA interpretation;
– provide the possibility to compare four different criteria for the selection of 
an optimal dimensionality of the CA solution; in this respect, the Malinvaud’s 
test (full discussion and references in § 4.2.2) has been implemented for the 
�rst time in R, at the best of my knowledge.
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The use of CA for seriation purposes is not the main concern here, 
and on this topic the reader is referred to the available literature (Weller, 
Romney 1990, 76-83; Baxter 1994, 118-123; Kjeld Jensen, Høilund 
Nielsen 1997; Smith, Neiman 2007; Baxter, Cool 2010, 218-220; Peeples, 
Schachner 2012).

In what follows, �rst, a brief introduction to CA will be sketched up. A 
full account of its theoretical and computational underpinnings can be found 
in Greenacre (2007) and, from an archaeological perspective, in Baxter 
(1994, 100-139) and Shennan (1997, 308-341). Later, the discussion of a 
detailed (�ctional) worked example will bring us into the core of the article’s 
argument, introducing the advantages of the author’s R script, i.e. a time-saving 
sequence of commands that can be executed by any user at any time. It allows 
the execution of CA in R without the need to manually enter long pieces of 
code, allowing the user to concentrate on the analysis’ results rather than, 
as said, on the ways to obtain them from R. Whereas the �ctional worked 
example clari�es the script description, the subsequent discussion of another 
case will put the script to work in a “real-world” archaeological situation 
drawn from literature. Conclusions will follow.

3. Correspondence Analysis: a short introduction

CA is an exploratory technique that graphically represents the relations 
among both rows and columns of contingency tables. The visual display of data 
helps the interpretation and allows patterns to emerge. The technique displays 
both rows and columns in a reduced-dimensional space by decomposing the 
total inertia (i.e., the variability) of the data table and identifying the factors 
that best synthesize the data variability. The graphical output of CA is a set 
of two-dimensional scatterplots where rows and/or columns are represented 
as points. The factors may be sorted in order of decreasing amount of inertia 
summarized: the �rst one summarizes the highest amount, while the second 
will be associated with the second largest proportion, and so on. 

On the scatterplot, the distance between data points of the same type 
(i.e., row-to-row) is related to the degree to which the rows have similar 
pro�les (i.e., relative frequencies of column categories). The same applies for 
the column-to-column distance. The more points belonging to the same set 
are close to each other, the more similar their pro�les are. The origin of the 
axes represents the centroid (i.e., the average pro�le, corresponding the table’s 
marginal pro�le), and can be conceptualized as the “place” where there is no 
difference between pro�les or, more formally (and to recall the chi-square 
terminology), it represents the null hypothesis of homogeneity of the pro�les 
(Greenacre 2007, 32). The more different are the latter, the more the points 
will be spread on the plane away from the centroid.
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In concluding this introductory section, a few words have to be said 
about outliers. Outliers are row/column pro�les that dramatically deviate 
from the others, for example, for having very small frequencies. These af-
fect the graphical output of CA, by setting far away from the centroid. As 
stressed by Baxter, Cool (2010, 220), outliers may dominate the plot, and 
cause the other pro�le points to cluster together. Greenacre (2011) shows 
an alternative representation that adjusts the visualization (i.e., not in�u-
enced by outliers), so that the interpretation of plots may be assured even 
in presence of outliers. This can be accomplished by using the Greenacre’s 
Standard Biplot (Greenacre 2007, 101-102; also called Contribution Biplot 
in Greenacre 2011, 9) that can be easily obtained by the package “ca” via 
the R script here described.

4. R script for Correspondence Analysis: worked examples

4.1 REQUIREM ENTS TO RUN THE SCRIP T

In order to run the script, there are just two basic requirements. The 
�rst is to install the required R packages (along with all their dependencies), 
namely “ca” and “FactoMineR” (see § 1 for references). Should the user not 
know how to install them, the apposite commands can be found right in the 
�rst lines of the script. Users can copy and paste them into the console to 
have R automatically perform the installation. The second requirement is to 
have some data to feed into R. The contingency table must be saved as tab-
delimited text �le (.txt). This can be easily accomplished in any statistical 
program (even in Microsoft Excel). 

To enter the data into R is straightforward. Upon running the script, 
a window will pop-up prompting the user to select the source data �le. The 
script will then produce, along with graphical outputs, a textual one saved in 
the program’s working directory as a text �le (named “output_Correspond-
enceAnalysis.txt”). It contains the CA output statistics relevant to the inter-
pretation of the data: e.g., original contingency table, row/column pro�les, 
association coef�cients, chi-square test, CA principal inertias, rows/columns 
coordinates, etc. 

Once the dataset has been fed into R, the CA will be run automati-
cally and users can just wait for the program to perform the needed steps. 
Upon completion (which should take just matter of seconds, depending on 
the computer’s speed), the user will have on the screen a series of windows 
displaying the analysis’ results that will be described in the following, as well 
as the aforementioned textual summary. Admittedly, there is little room for 
interaction with users during the main body of the analysis. I wish to make 
clear that, while someone could consider this a �aw, in my opinion it perfectly 
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complies with the logic of a script intended for inexperienced and average 
users, who can just wait for the analysis to be performed. More experienced 
users, as already stressed, have already the expertise to use the script (or parts 
thereof) in a more personal way.

In the following paragraphs, the analytical output of the script will 
be described. The description will be interspersed with a discussion of the 
context of use of the information provided by the script. Emphasis will be 
put on the graphical display of the script, and reference will be made to the 
textual output when relevant to the discussion.

4.2 WORKED (�CTIONAL) EXAM P LE

For illustrative purposes, a contingency table is created with 12 rows 
and 7 columns (Tab. 1). It represents the �ctional distribution of seven pottery 
types across twelve sites. The analyst’s interest could lie in understanding if a 
correspondence exists between sites and pottery types; in other words, whether 
types are evenly distributed across sites, or if a pattern of association exists 
between sites and types. This will be accomplished by means of CA. 

4.2.1 Association between rows and columns
The preliminary interest could be in the strength of association between 

rows and columns of the table. This information is provided by a bar chart 
(Fig. 1a). It shows the magnitude of the correlation coef�cient on the right 
side, compared with the overall range (0.0-1.0) of the coef�cient (on the left). 
A reference line indicates the threshold (0.20) above which the correlation can 

Tab. 1 – Table displaying the frequency of 7 pottery types across 12 
sites, as input to the R script.
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be considered important (Bendixen 1995, 576; Healey 2013, 289-290). It 
should be noted that the correlation coef�cient is the square root of the table’s 
inertia, and it turns out to correspond to the phi coef�cient used to measure 
the strength of association between two categorical variables (Greenacre 
2007, 28, 61). In our example, the correlation coef�cient is equal to 0.57 
pointing to a strong association (Healey 2013, 289). It should be also noted 
that the existence of a signi�cant dependence between rows and columns 
could be tested via the chi-square test (on this test see Cool, Baxter 2005; 
Drennan 2009, 182-188). Should the user be interested in it, the textual 
output of the script provides the results of the test, which in our case turns 
out to be signi�cant (chi-square: 319.92; df: 66; p: < 0.001). 

4.2.2 Number of dimensions useful for data interpretation
Before delving into the core of CA results, the user should decide how 

many dimensions could be considered relevant for the interpretation of the 
data. In other words, how many axes he must take into consideration in order 
to have a good representation of the patterns of association. 

It has to be stressed that this is one of the “thorniest” problem (Preacher 
et al. 2013, 29) affecting CA as well as Factor Analysis, Principal Compo-
nents Analysis (PCA) and Multidimensional Scaling (see, e.g., Jackson 1993; 
Wilson, Cooper 2008; Van Pool, Leonard 2011, 296-299). As stressed by 
Hair et al. (2009, 591), in selecting the optimal number of dimensions the 
analyst is faced with the need of a trade-off between the increasing explained 
data variability deriving by keeping many dimensions versus the increasing 
complexity that can make dif�cult the interpretation of more than two di-
mensions. Like for other techniques, for which a number of approaches exists 
each having its pros and cons (overviews in Worthington, Whittaker 2006, 
820-822; Wilson, Cooper 2008), also in CA there is no clear-cut rule guid-
ing the analyst’s choice (Lorenzo-Seva 2011, 97) and different approaches 
have been proposed. 

A more informal approach leans toward considering the number of use-
ful dimensions �xed by the very analyst’s ability to give meaningful interpreta-
tion of the retained axes (Benzécri 1992, 398; Blasius, Greenacre 1998, 
25; Yelland 2010, 13). In other words, dimensions that cannot be sensibly 
interpreted can be considered the result of random �uctuations among the 
residuals (Clausen 1998, 25). 

Another approach would be to keep as many dimensions as necessary 
to account for the majority of the total inertia, setting a cut-off threshold at 
an arbitrary level, say 90% (see, in the context of Factor Analysis, Van Pool, 
Leonard 2011, 296). On the other hand, Hair et al. (2009, 591) suggest that 
dimensions whose inertia is greater than 0.2 (in terms of eigenvalue) should 
be included in the analysis. 



Fig. 1 – CA on data of Tab. 1. Charts provided by the R script. a) Bar chart showing the coef�cient 
(right) for the correlation between rows and columns of the table. A reference line indicates the 
threshold of “signi�cant” correlation. b) Bar chart showing the percentages of inertia explained 
by the CA dimensions. A reference line suggests the threshold above which a dimension should be 
considered important for data interpretation according to the average rule. c) Symmetric map of 
CA on Tab. 1, showing the �rst 2 dimensions (from the “ca” package).
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Another frequently used method is the inspection of the scree plot, 
adapted from the context of PCA (Cattell 1966). Dimensions are plotted 
in order of the decreasing amount of explained inertia, resulting in a falling 
curve. The point at which the latter shows a bend (so called “elbow”) can be 
considered as indicating an optimal dimensionality (e.g., Clausen 1998, 24; 
Drennan 2009, 286-288; Van Pool, Leonard 2011, 296-297). It is wor-
thy of note that this method has been found to perform fairly well (Zwick, 
Velicer 1986, 440; Bandalos, Boehm-Kaufman 2009, 81; Lorenzo-Seva 
2011, 97). 

The average rule, as termed by Lorenzo-Seva (2011, 97), is yet an-
other method, which is equivalent to the Kaiser’s rule in the context of PCA 
(Wilson, Cooper 2008, with references). According to this rule, analysts 
should retain all the dimensions that explain more than the average inertia 
(expressed in terms of percentages), the latter being equal to 100 divided by 
the number of dimensions (i.e., the number of rows or columns, whichever 
is smaller, minus 1). Unfortunately, in the context of PCA, this method seems 
to overestimate the dimensionality of the solution (Wilson, Cooper 2008, 
866; Lorenzo-Seva 2011, 97). 

Saporta (2006, 209-210) has suggested the use of the Malinvaud’s 
test as guidance for the dimensionality of the CA solution (see also Camiz, 
Gomes 2013a, 12). In practice, referring to Saporta’s book or Camiz-Gomez’s 
article for the computational details (see also Rakotomalala 2013, 7), this 
sequential test checks the signi�cance of the remaining dimensions once the 
�rst k ones have been selected. As stressed by Saporta himself and empiri-
cally tested by Rakotomalala (2013), it seems to overestimate the number 
of dimensions as the table’s grand total increases.

Finally, Lorenzo-Seva (2011) has interestingly adapted to CA a method 
developed for PCA, called Parallel Analysis. Its rationale is that nontrivial 
dimensions should explain a larger percentage of inertia than the dimensions 
derived from random data. While this method outperforms the aforementioned 
average rule, it seems to suggest a dimensionality of the solution comparable 
to the one that can be derived from the scree plot, at least in the illustrative 
example discussed by the scholar (Lorenzo-Seva 2011, 101, �g. 1). 

In front of the sizable number of different approaches, each one having 
its pros and cons, I would lean toward a middle ground as to the problem of 
the dimensionality of the CA solution, trying to conciliate formal testing, on 
the one hand, with conceptual interpretability as dimension-retention criterion, 
on the other hand. I would agree with Worthington, Whittaker (2006, 
822) who lucidly state that «in the end, researchers should retain a factor only 
if they can interpret it in a meaningful way no matter how solid the evidence 
for its retention». In their opinion, exploratory approaches are «ultimately a 
combination of empirical and subjective approaches to data analysis because 
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the job is not complete until the solution makes sense». Within this general 
framework, I would also agree with Bandalos, Boehm-Kaufman (2009, 80-
81) as to the need to compare and �nd a balance between different methods, 
provided that one deals with signi�cant factors according to the chi-square 
statistic. The methods provided by the script are the average rule, the scree 
plot, and the Malinvaud’s test. A fourth criterion, namely the retention of 
dimensions whose eigenvalue is greater than 0.2 (sensu Hair et al. 2009 previ-
ously quoted), can be easily put to work thanks to the script output (via the 
“ca” package), as will be described shortly. The reason for the choice of these 
methods rests on the opportunity to provide the users with the possibility 
to compare at least four of the criteria previously illustrated. Lorenzo-Seva’s 
Parallel Analysis as applied to CA would be interesting to implement, but, 
admittedly, is beyond my current programming expertise. 

As for the average rule in the context of our worked example, any axis 
contributing more than the average percentage of inertia (100/11=9% in terms 
of rows, 100/6=16.7% in term of columns) should be considered important 
for the interpretation of the data (see, e.g., Bendixen 1995, 577). It must 
be acknowledged, however, that interesting patterns can emerge by inspect-
ing more than just the �rst two dimensions, as rightly stressed by Baxter 
(1994, 120). With this warning in mind, the bar chart provided by the script 
can be used as a guidance in the choice of the relevant dimensions (Fig. 1b). 
Dimensions are plotted in order of the decreasing amount of explained 
inertia. A reference line represents the threshold above which a dimension 
can be considered important according to the average rule. In our case, a 2-
dimensional solution seems appropriate, with the �rst explaining over 60% 
of the inertia, and the second about 20%. It must be noted that the threshold 
represented by the reference line is also indicated in a speci�c section of the 
script’s textual output. 

The same chart can be read off as a scree plot: the point at which a bend 
is evident in the falling curve described by the histograms can be taken as 
indicating an (not the) optimal dimension. It is worth noting that the number 
of dimensions suggested by the chart, once it is read off as a scree plot, is 
consistent with the dimensionality suggested by the average rule. 

The result of the Malinvaud’s test is reported in a speci�c section of 
the script’s textual output. In our case, only the �rst three dimensions seems 
to be important since their p value is below 0.05, while the other three have 
a value equal to 0.167, 0.573 and 0.825 respectively.

As far as the greater-than-0.2 rule is concerned, the dimensions comply-
ing with that criterion can be located by inspecting the script’s textual output, 
which reports the list of dimensions with associated eigenvalues (after the 
“ca” package). According to this rule, only the �rst dimension, accounting for 
more than half of the total inertia (i.e., 63.5%), should be retained. 
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The difference between the four methods underscores the need to com-
pare and �nd a balance between multiple dimension-retention criteria. In our 
case, a 2 or 3-dimensional solution seems appropriate.

4.2.3 Interpreting the CA scatterplot: dimensions interpretation
The script provides the symmetric plots (rows and columns; rows only, 

columns only) for the signi�cant dimensions. The plots are obtained from the 
“ca” package. The plot, showing the row (point) and column (triangle) pro�le 
points at the same time, is reproduced in Fig. 1c. To interpret the plot it is 
useful to clarify that we are interested in interpreting the relative position of 
the row points in the space de�ned by the columns. In other words, we seek to 
understand the similarity of the sites on the basis of the proportion of pottery 
types present in each location. The next step for the interpretation is to assess 
what column category (i.e., type) is actually determining the dimensions. In 
a sense, we are going to give “names” to the dimensions. 

To accomplish this, two ways are made available by the script. The �rst, 
which is not natively available from any of the packages taken into account 
here and has required some additional programming, is to inspect the bar plot 
in Fig. 2a. The contribution (in permills) of pottery types to the de�nition of 
the �rst four dimensions is displayed. The reference line indicates the threshold 
(average contribution) above which any contribution has to be considered 
important for the de�nition of that dimension (Greenacre 2007, 82). It can 
be seen that type C, F, and G have a major role in the de�nition of the �rst 
dimension, with the �rst and last of the three also having a large contribu-
tion to the second dimension. Incidentally, it must be noted that type A and 
B have a large contribution only to the third and fourth dimension. Should 
the analyst be interested in those pottery types, he can proceed to inspect the 
other plots provided by the script, representing the �rst dimension and the 
third or the fourth one.

The second option is the Standard Biplot (also called Contribution 
Biplot; see § 3) provided by the “ca” package (Fig. 2b). In this plot, while the 
position of the row pro�le points is unchanged relative to that in Fig. 1c, the 
distances of the column points from the centroid are related to the contribu-
tion that each column category gives the principal axes (Greenacre 2007, 
101-103, 268-270). Besides, the closer an arrow is (in terms of angular dis-
tance) to an axis (or to a pole thereof) the greater is the contribution of the 
column category on that axis relative to the other axis. If the arrow is halfway 
between the two, its column category contributes to the two axes to the same 
extent. It is evident that type F has a major contribution to the positive pole 
of the �rst dimension, while type C and G have a major contribution to the 
de�nition of both the �rst and second dimension. In this respect, while C and 
G both contribute to the negative pole of the �rst dimension, they contribute 



Fig. 2 – CA on data of Tab. 1. Charts provided by the R script: interpretation of the dimen-
sions. a) Bar chart showing the contributions (in permills) of column categories to the �rst 4 
dimensions; a reference line indicates the average contribution. b) Standard Biplot showing 
the �rst 2 dimensions (from the “ca” package). Note: the length of each arrow joining the 
column points to the origin is related to the contribution that each column category makes 
to the principal axes.
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to different poles of the second dimension, the negative and the positive one 
respectively. The information provided by Figs. 2a and 2b complement each 
other and both could be used in reports or publications. 

In fact, while in Fig. 2a it is possible to see which category has a major 
contribution to the dimensions, from Fig. 2b we can gain the same information 
directly in the context of the scatterplot and in addition we can have an idea 
of what pole of the dimensions the column categories are actually contributing 
to. Indeed, the Standard Biplot has another interesting interpretative potential 
that will be touched upon later on (§ 4.2.6)

4.2.4 Interpreting the CA scatterplot (continued): correlation between row 
pro�les and dimensions

The next step is to consider the correlation between the row pro�les and 
the dimensions. This means that, after having given “names” to the dimensions 
(i.e., after having located what column category has determined the dimensions), 
we can understand how row categories (sites, in our example) relate to the 
dimensions. This can be done by inspecting the bar plot (not natively returned 
by any package) provided by the script (Fig. 3), where the correlation (ranging 
from 0.0 to 1.0) between row categories and the dimensions is displayed. 

The reader is referred to Greenacre (2007, 86) for a full coverage of 
the way in which CA computes these �gures. It suf�ces here to stress that 
almost all the sites (i.e. row categories) have a strong correlation with the 
�rst dimension, with the exception of site 3, 5, and 12. These have a strong 
correlation with the second dimension instead. The analyst may refer back 
to the scatterplot (Fig. 1c) to have an idea to which pole of the dimensions 
these correlations refer.

4.2.5 Quality of the representation
Finally, the analyst has to take into consideration the fact that not all 

the points could be well displayed in the chosen dimensions. To assess the 
quality of the display, he can consult the statistics provided by the “ca” pack-
age showing both on the R console and in the textual output of the script, 
or inspect the bar chart provided by the script itself (Fig. 4). It can be seen 
that almost all the sites are well displayed by the �rst two dimensions or, in 
other words, these dimensions explain the greatest percentage of the inertia 
of those pro�les. Only site 6 and 10 turn out to be poorly displayed, implying 
that the position of those two points on the scatterplot must be evaluated 
with caution.

4.2.6 Assembling the whole picture
From the preceding guidelines it should be apparent that by means of 

CA we may have a clearer and richer picture of the patterns of association 
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Fig. 3 – CA on data of Tab. 1. Charts provided by the R script. Bar chart showing the correlation 
between the row categories (sites) and the CA dimensions.

between sites and type and, more importantly, we can dissect patterns of 
variations encoded in our data. CA allowed the isolation of two main trends 
(i.e., dimensions) of variation in our dataset, with the �rst being far more 
important in that it accounts for more than half the total data variability 
(i.e., inertia). The �rst two dimensions together explain almost 90% of the 
inertia (actually, 88.3%). 

It has been possible to assess that the �rst dimension is determined by 
the opposition between type F (positive pole), on the one hand, and C and G 
(negative pole) on the other. The second dimension (accounting for a lesser 
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Tab. 2 – Row pro�les of Tab. 1; the average row pro�le is also 
shown.

amount of variability) is determined by the opposition between G (positive 
pole) and C (negative pole). It is now possible to interpret the position of 
the sites relative to the dimensions in terms of the different in�uence of each 
dimension (i.e., pottery types) on the sites. The more they lie on the right (the 
positive side of the �rst dimension) the more they will be “associated” with 
type F or, put another way, the more type F will make a high proportion in 
their assemblages. This does not mean that sites on that side of the plot will 
not have type A and D. It does mean, however, that the proportion of type F 
will be greater than one of the other two types. The more the sites will lie to 
the left (negative pole of the �rst dimension), the more they will be “associ-
ated” with types G and C. Moreover, with respect to the second dimension, the 
more the sites lie in the upper part the plot, the more they will be correlated 
to type G, while type C will make a higher proportion in the assemblages of 
the sites lying in the lower part of the plot. 

As seen in the bar chart in Fig. 3, site 2, 4, 10, and 11 have a high cor-
relation with the �rst dimension (i.e., type F). It is possible to take a look at 
the table of row pro�les (Tab. 2) to see that in those sites a higher-than-average 
proportion of type F is present. The only exception is site 6, which is displayed 
near the previous four site points even if that pottery type makes a proportion 
lower than the average. The reason is that site 6 is not well displayed by the 
�rst two dimensions, as seen in Fig. 4. As for the other sites, 5, 9, and 12 have 
a high correlation with the negative pole of the second dimension (i.e., type 
C) and, accordingly, show a higher-than-average proportion of that particu-
lar type. Finally, site 1, 7, and 8 are highly correlated with the �rst (negative 
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Fig. 4 – CA on data of Tab. 1. Charts provided by the R script. Bar chart showing the quality of the 
representation of row categories (sites) on the dimensions 1+2, 1+3, and 1+4.

pole) and second (positive pole), both determined by type G, which makes a 
higher proportion on these sites. 

It has to be noted that the Standard Biplot (Fig. 2b) also gives an idea of 
the relative frequency of a given pottery type in the sites’ assemblages. This is 
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one of the advantages referred to in § 4.2.3. For example, consider the imagi-
nary axis to which the arrow representing the type G belongs, and let us line 
up on it the projections of the row pro�le points. The pro�le points whose 
projection intersects the axis on the same side of the arrow are those having 
a higher-than-average proportion of that pottery type. Those intersecting the 
axis on the opposite side are those having a lower-than-average proportion. 
In addition, the more a projection intersects the axis away from the centroid, 
the greater will be the difference between the average and the proportion that 
the pottery type makes on the pro�les (Greenacre 2007, 103). For example, 
taking into account sites 1, 7, and 8, the one whose projection lies further from 
the origin is site 8, which has the highest proportion of that type (27.66%). 
The second and third are, respectively, site 7 (18.18%) and 1 (11.29%).

The second advantage of the Standard Biplot comes into play in the 
presence of outliers (§ 3 with references therein). Should outliers be present, 
since generally they are pro�les with a low contribution to the inertia, the 
Standard Biplot provides the possibility to reduce the distortion in the graphi-
cal display (i.e., plotting the outliers too far from the centroid). In fact, in 
this plot, the smaller the contribution of a category to the de�nition of the 
dimensions, the more it will be pulled in toward the centroid. 

4.2.7 Extension: clustering rows and/or columns
The script provides the facility to perform a cluster analysis (Baxter 

1994, 140-184; Shennan 1997, 216-264; Drennan 2009, 309-320) over the 
CA results. This is accomplished via the “FactoMineR” package. Often the 
user could be interested in isolating clusters of points on the CA scatterplot 
(see, e.g., Wallin 2010, 70). To keep with our example, he could be willing 
to indicate on the scatterplot groups of sites that are similar in terms of their 
assemblage pro�les. This could be accomplished in an informal way, grouping 
“by eye” the points lying one near the other on the plot. Indeed users may 
require a more formal method. 

Greenacre (1988; 2007, 113-120) describes a method particularly well 
suited to the underlying logic of CA (Greenacre 1988, 41), whose algorithm 
can be described as follows (Greenacre 2007, 116): rows are progressively 
aggregated in a way in which every successive merging produces the small-
est change in the table’s inertia, and this process goes on until the table is 
reduced to just one row “consisting of the marginal columns of the original 
table” (Greenacre 2007, 116, 117, �g. 15.4). The same applies to columns. 
The underlying logic lies in the fact that rows (or columns) whose merging 
produces a small change in table’s inertia have similar pro�les. This procedure 
can be thought of as maximizing the between-group inertia and minimizing 
the within-group inertia (Greenacre 2007, 116). The successive merging of 
rows (or columns) can be graphically depicted as a dendrogram. Each level 
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Fig. 5 – CA on data of Tab. 1. Charts provided by the R script. a) CA map showing row categories 
(sites) with different colours indicating different clusters. b) As previous �gure, with cluster tree 
displayed on the map. c) Cluster tree with optimal cluster partition (boxes) as suggested by “Facto-
MineR”. All charts from the “FactoMineR” package.
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at which the merging occurs corresponds to the associated reduction of the 
table’s inertia.

A method essentially similar is that provided by the “FactoMineR” 
package (Lê et al. 2008; Husson et al. 2010; 2011, 177-185) used by the 
script. It returns three plots: the �rst is the CA scatterplot with points (in our 
example, row pro�le points) coloured on the basis of the clusters they belong 
to (Fig. 5a); the second is quite similar, with the clusters tree plotted directly 
onto the scatterplot (Fig. 5b); the third is the clusters tree with the optimal 
level of division indicated by coloured boxes (Fig. 5c). 

Even though different approaches exist in cluster analysis to decide 
how many clusters can be read out of the results (i.e., cutting the dendro-
gram at a particular height), ranging from informal (Drennan 2009, 316) to 
formal ones (so-called “stopping rules”; see e.g. Milligan, Cooper 1985, 
163-167; overview in Baxter 1994, 161-165; Everitt et al. 2011, 95-96), 
and acknowledging the fact that the problem is a «dif�cult one for which 
no completely satisfactory solution exists» (Baxter 1994, 162), “FactoM-
ineR” natively suggests an optimal partition. While its mathematical details 
are beyond the scope of this article (and I refer the reader to the references 
provided), suf�ces here to say that, as made clear by Husson et al. (2011, 
185), a division into Q (i.e., a given number of) clusters is suggested when the 
increase in between-group inertia attained when passing from a Q-1 to a Q 
partition is greater than that from a Q to a Q+1 clusters partition. In other 
words, during the process of rows (or columns) merging, if the following ag-
gregation raises highly the within-group inertia, it means that at the further 
step very different pro�les are being aggregated.

To keep with our �ctional example, this means that the sites belonging 
to the same cluster (2, 3, 4, 6, 10, 11; 1, 5, 9, 12; 7, 8) are those with more 
similar pro�les. Referring back to the original contingency table, those rows 
could be collapsed into two distinct groups, and this would produce the least 
decrease in the table’s inertia since, as said, the sites belonging to those two 
groups have the more similar pro�les in terms of pottery types. This could 
be relevant for the sake of any further archaeological interpretation since it 
could provide the bases to hypothesize, for instance, that the sites could rep-
resent two different chronological horizons, or could belong to two different 
cultural traditions, and so forth.

4.3 Additional example

In this paragraph it is considered the dataset illustrated, but not 
further discussed, by Shennan (1997, 355-357). It is made up of 10 rows 
and 5 columns (grand total: 3503) and concerns the counts of different 
lithic types from ten levels at the Palaeolithic cave at Ksar Akil (Lebanon) 
(Tab. 3). An attempt will be made to use CA as a mean to reveal patterns 
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Tab. 3 – Cross-tabulation of the frequency of �ve lithic types across ten levels from the Palaeolithic 
cave at Ksar Akil (Lebanon) (after Shennan 1997).

of assemblage variation and to understand how lithic types relate to any 
pattern pinpointed.

The result of the chi-square test is signi�cant (chi-square: 448.6, df: 
36, p: <0.0001) and the square root of the inertia is 0.36. While different 
views exist on how to characterize the correlation strength, since scales and 
their boundaries are often de�ned using subjective arguments varying from a 
research �eld to another, 0.36 can be thought of as pointing to the existence 
of an association between row and column categories that someone could 
label as low (Rowntree 2000, 170) or moderate (Taylor 1990, 37), while 
other could interpret it as moderately large (Cohen, Lea 2004, 211) or even 
strong (Healey 2013, 289 table 11.12). Taking a middle ground, we could 
de�ne our correlation as moderate.

While both the �rst and second dimensions are below the 0.2 thresh-
old (according to the aforementioned criterion as suggested by Hair et al. 
2009), the average rule and the scree plot point to a 2-dimensional solution. 
As for the Malinvaud’s test, the �rst three dimensions have a p value well 
below 0.01, while the p value of the fourth dimensions is 0.148. It is worthy 
of note that the �rst two CA dimensions capture the majority of the data 
variability (59.4% and 32.0% respectively), for a total of 91.4% (Fig 6a). 
All the categories are therefore well represented on that plane, i.e. have good 
quality of the display (Fig. 6b). 

Since the interest lies in understanding the composition of the levels as 
far as the proportion of different lithic types is concerned, the interpretation 
of the CA results will be centered on the examination of the position of the 
level points in the space de�ned by the lithic type categories.

The symmetric biplot clearly depicts a major division between two broad 
groups lying on the opposite poles of the �rst (horizontal) dimension (Fig. 7). 
This holds true both for the levels (i.e., rows) and lithic types (i.e., columns). 
By inspecting the Standard Biplot (Fig. 8), on the one hand, and the bar chart 
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Fig. 6 – CA on data of Tab. 3. a) Percentage of inertia explained by the dimensions. Reference line: 
threshold above which a dimension should be considered important for data interpretation according 
to the average rule. b) Histograms showing the quality of the display of row and column categories 
on the �rst two CA dimensions.

of the contribution of column categories to the principal dimensions (Fig. 9a), 
on the other hand, it is apparent that the types “partially cortical” and “�ake 
blades” are actually de�ning the opposite poles of the �rst dimension. The “non 
cortical” and “blades” categories are the major contributors to the de�nition 
of the second dimension. Levels 7, 8, 9 and 10 have a high correlation with 
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Fig. 7 – Symmetric map of CA on Tab. 3, showing the �rst 2 dimensions.

the “�ake blades” (i.e., negative pole of �rst dimension) (Fig. 9b), while levels 
3, 4, 5, and 6 are mainly correlated with “partially cortical” (i.e., positive pole 
of the same dimension). Moreover, level 2 has the highest correlation with 
“non cortical” type (positive pole of the second dimension), and level 7 is also 
correlated with “blades” (negative pole of the same dimension).

On the whole, it seems that in the data a trend can be discerned point-
ing to a shift from the “partially cortical” category featuring the upper (i.e., 
later) levels to the “�ake blades” category having a major proportion in lower 
(i.e., earlier) levels. It is worth noting that this picture is consistent with the 
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Fig. 8 – Standard Biplot of CA on Tab. 3, showing the �rst two dimensions. For the interpretation 
of this type of Biplot, see caption of Fig. 2.

remarks of Goring-Morris, Bergman (1987) who located in levels 8 and 
6 (lying on the opposite poles of the �rst dimension in the present analysis) 
two major shifts in the development of the lithic production technology at the 
site. There are grounds to believe that the �rst CA dimension is successfully 
capturing the temporal shift from earlier to later levels and related lithic as-
semblage composition. A slight parabolic curve can be discerned on the CA 
scatterplot in relation to the spread of level points. It is more apparent by 
plotting (just for illustrative purposes since, as seen, the �rst two dimensions 
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Fig. 9 – a) Histograms showing the contribution (in permills) of the column categories of Tab. 3 (i.e., 
lithic types) to the de�nition of the �rst two CA dimensions. Reference line: average contribution. 
b) Histograms showing the correlation of row categories (i.e., archaeological levels) with the �rst 
two CA dimensions.

account for most of the inertia) the �rst and third dimensions (Fig. 10). While 
it should point to the existence of a seriation structure (see references in § 
2), it seems too sparse to suggest a good seriation (on this topic, see, e.g., the 
discussion in Kjeld Jensen, Høilund Nielsen 1997, 43-51). While a seri-
ation is poorly supported by the data, CA’s �rst dimension allows to isolate 
two major groups of levels, as seen. 

If we are interested in a more formal way to locate those groups on 
the basis of the CA results, the rows hierarchical clustering as provided 
by the script can be inspected (Fig. 11a-c). It become even more apparent 
a clear distinction in two major groupings. Again, this is consistent with 
Goring-Morris, Bergman’s (1987, 143) remarks. As a matter of fact, they 
underscored that the site’s sequence is unlikely to represent a developmental 
continuum. Rather, in their view, groups of levels are likely to represent a 
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Fig. 10 – Symmetric map of CA on Tab. 3, showing (just for illustrative purposes) 
the �rst and third dimensions.

«short-term evolution which is separated from the other groups by breaks in 
the archaeological sequence». It is apparent that CA seems to support these 
conclusions. In fact, on the one hand, the very weak seriation structure is 
consistent with the view of a short-term evolution (interrupted by breaks) as 
opposed to a developmental continuum. On the other hand, the distinction 
of two major groups of levels is consistent with the picture of broad chrono-
logical horizons representing two main stages of the development of the site’s 
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Fig. 11 – Hierarchical clustering of row categories of Tab. 3. a) CA map showing row points (ar-
chaeological levels) on the �rst two dimensions, coloured according to cluster membership. b) CA 
map with clusters tree superimposed. c) Cluster tree with indication of optimal partition (boxes) in 
two clusters as suggested by “FactoMineR”.
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lithic technology. Finally, it should be noted that, since level 1 falls in the same 
group of the lower levels, the analyst should take into consideration the need 
to explore further whether or not non-cultural processes (post depositional 
disturbances or other kinds of events) could have possibly affected the lithic 
assemblage of that top level.

5. Conclusions

This article has attempted to describe the usefulness of the script 
written in order to simplify the use of CA in the R statistical environment. 
While the latter has enormous advantages (free of charge, publication qual-
ity graphical outputs, variety of statistical tools available), its command-
line structure could intimidate the potential users of CA. This paper has 
attempted to show how the script can make CA easy to perform in R with 
just a couple of clicks on the user’s part. More importantly, by discussing 
two worked examples, it has been shown how the script can provide the 
user with a body of graphical and textual outputs relevant to the interpre-
tation of data structure. The article has also attempted to stress the utility 
of some graphs not so widely used (to the best of author’s knowledge) in 
the context of archaeological studies (i.e., Greenacre’s Standard Biplot), not 
to mention the utility of the rows/columns clustering as provided by the 
“FactoMineR” package, and of the Malinvaud’s test for the selection of an 
optimal dimensionality of the CA solution, which has been implemented 
in R for the �rst time. Finally, it is hoped that the description of the script 
will offer a common-sense approach to CA that will prove useful even to 
the most skeptical user.

Gianmarco Alberti
PhD, University of Udine
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ABSTRACT

Over the years Correspondence Analysis has become a valuable tool for archaeologists 
because it enables them to explore patterns of associations in large contingency tables. While 
commercial statistical programs provide the facility to perform Correspondence Analysis, 
a number of packages are available for the free R statistical environment. Nonetheless, its 
command-line structure may be intimidating for users and prevent them from considering the 
technique. This article describes an R script, written by the author, which aims to free the R 
user from manually entering long pieces of code. By discussing two worked examples, it shows 
how the script can provide the user with a body of graphical and textual outputs relevant to 
the interpretation of data structure. It is hoped that the script will allow the user to concentrate 
more on the analysis results rather than the syntax of the R environment.




